题目一 198.
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。
示例 1:
输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:
输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
偷窃到的最高金额 = 2 + 9 + 1 = 12 。
思路
题目要求不能偷相邻的房屋,那么对于一个房屋i
,有偷和不偷两种状态,如果偷,说明前面一个房屋不能偷,偷盗金额是dp[i-2]+nums[i]
,如果不偷,说明隔壁刚偷过,偷盗金额是dp[i-1]
,偷到当前房屋i
能够偷到的最大金额是两者取最大值:max(dp[i-2]+nums[i],dp[i-1])
。
具体代码如下:
class Solution {
public:
int rob(vector<int>& nums) {
int len = nums.size();
if(len == 0)
return 0;
if(len == 1)
return nums[0];
vector<int> dp(len+1,0);
dp[1] = nums[0];
for(int i = 1;i < len;i++){
dp[i+1] = max(dp[i-1]+nums[i],dp[i]);
}
return dp[len];
}
};
题目二 213.
你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。
示例 1:
输入: [2,3,2]
输出: 3
解释: 你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入: [1,2,3,1]
输出: 4
解释: 你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
思路
第一间房和最后一间房不能同时打劫,如果打劫第一间,只能打劫到倒数第二间为止。
如果不打劫第一间,可以从第二件一直打劫到最后一间。两种情况取最大值即可。
具体代码如下:
class Solution {
public:
int rob(vector<int>& nums) {
int len = nums.size();
if(len == 0)
return 0;
if(len == 1)
return nums[0];
vector<int> nums1(nums.begin()+1,nums.end());
vector<int> nums2(nums.begin(),nums.end()-1);
return max(rob1(nums1),rob1(nums2));
}
int rob1(vector<int>& nums) {
int len = nums.size();
if(len == 0)
return 0;
if(len == 1)
return nums[0];
vector<int> dp(len+1,0);
dp[1] = nums[0];
for(int i = 1;i < len;i++){
dp[i+1] = max(dp[i-1]+nums[i],dp[i]);
}
return dp[len];
}
};
题目三 337.
在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。
计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。
示例 1:
输入: [3,2,3,null,3,null,1]
3
/ \
2 3
\ \
3 1
输出: 7
解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7.
示例 2:
输入: [3,4,5,1,3,null,1]
3
/ \
4 5
/ \ \
1 3 1
输出: 9
解释: 小偷一晚能够盗取的最高金额 = 4 + 5 = 9.
思路
树的问题都可以用递归实现,从根节点开始分析,如果偷根节点(记为第一层),则下一次偷盗只能从第三层开始(即根节点的左右子树的左右子树),如果不偷根节点,下一次偷盗可以从第二层开始(即根节点的左子树和右子树)。
最后两者取最大值就是结果。
为避免重复访问,建立一个status
字典记录访问过的节点和其对应的最大值。
具体代码如下:
class Solution {
unordered_map<TreeNode*,int> status;
public:
int rob(TreeNode* root) {
if(!root)
return 0;
if(status.find(root) != status.end())
return status[root];
int money1 = root->val;
int money2 = rob(root->left) + rob(root->right);
if(root->left){
money1 += rob(root->left->left) + rob(root->left->right);
}
if(root->right){
money1 += rob(root->right->left) + rob(root->right->right);
}
status[root] = max(money1,money2);
return status[root];
}
};
优秀题解
还有一种复杂度更低的方法,保存一个中间值:exclude_root_sum
,表示不包含root->val
的最大值。那么最后的结果就是偷根节点:根节点(root->val)+孙节点(exclude_left+exclude_right)
和不偷根节点:子节点(left+right)
中的最大值。
left
与exclude_left
可以通过递归实现。
具体代码如下:
class Solution {
public:
int rob(TreeNode* root) {
int exclude_root_sum = 0;
return robCore(root,exclude_root_sum);
}yu
int robCore(TreeNode* root,int& exclude_root_sum){
if(!root)
{
exclude_root_sum = 0;
return 0;
}
int exclude_left = 0;
int exclude_right = 0;
int left = robCore(root->left,exclude_left);
int right = robCore(root->right,exclude_right);
exclude_root_sum = left+right; //更新exclude_root_sum
return max(root->val+exclude_left+exclude_right, left+right);
}
};