Python学习笔记

1、概述

本篇博客用来记录 Python 的学习笔记和过程。

参考链接:Python学习教程-廖雪峰


2、学习笔记

2.1、简介

Python是一种计算机程序设计语言。

Python就为我们提供了非常完善的基础代码库,覆盖了网络、文件、GUI、数据库、文本等大量内容,被形象地称作“内置电池(batteries included)”。用Python开发,许多功能不必从零编写,直接使用现成的即可。

Python 的缺点

  1. 运行速度慢
  2. 代码无法加密:由于是解释性语言,发布程序就是发布源码

2.2、第一个 python 程序

前提:在安装 python 后,
打开 cmd 窗口(命令行模式),然后输入 python,进入 python 交互模式

在这里插入图片描述


在命令行模式下,可以执行python进入Python交互式环境,也可以执行python hello.py运行一个.py文件。
Python交互模式的代码是输入一行,执行一行,而命令行模式下直接运行.py文件是一次性执行该文件内的所有代码。


在这里插入图片描述


输入与输出

在这里插入图片描述


2.3、基础知识

2.3.1、数据类型与变量

整数

Python允许在数字中间以_分隔

在这里插入图片描述


浮点数
浮点数也就是小数,且可以使用科学计数法,例如 1.21e2

在这里插入图片描述


字符串

字符串是以单引号'或双引号"括起来的任意文本,比如'abc'"xyz"等等。
且可以使用转义字符\
在这里插入图片描述


布尔值

一个布尔值只有TrueFalse两种值
布尔值可以用andornot运算。

在这里插入图片描述


空值

空值是Python里一个特殊的值,用None表示。
在这里插入图片描述


变量

变量的概念基本上和初中代数的方程变量是一致的,只是在计算机程序中,变量不仅可以是数字,还可以是任意数据类型。
变量名必须是大小写英文、数字和_的组合,且不能用数字开头

在这里插入图片描述


在这里插入图片描述


变量
所谓常量就是不能变的变量,在Python中,通常用全部大写的变量名表示常量

在这里插入图片描述


2.3.2、字符串和编码

在这里插入图片描述


在这里插入图片描述


在最新的Python 3版本中,字符串是以Unicode编码的,也就是说,Python的字符串支持多语言

print("这个是中文")   # 包含中文的 str

对于单个字符的编码,Python提供了ord()函数获取字符的整数表示,chr()函数把编码转换为对应的字符:

print(ord('中'))  # 20013
print(chr(20013)) # 中

由于Python的字符串类型是str,在内存中以Unicode表示,一个字符对应若干个字节。如果要在网络上传输,或者保存到磁盘上,就需要把str变为以字节为单位的bytes
Python对bytes类型的数据用带b前缀的单引号或双引号表示:
Unicode表示的str通过encode()方法可以编码为指定的bytes

print('ABC'.encode('ascii'))  # b'ABC'
print('ABC'.encode('utf-8'))  # b'ABC'
print('中'.encode('utf-8'))   # b'\xe4\xb8\xad'
print('中'.encode('ascii'))   # 报错

注意,中文是无法使用 ascii 进行编码的

可以使用 decode() 方法进行解码

print(b'ABC'.decode('ascii'))                         # ABC
print(b'\xe4\xb8\xad\xe6\x96\x87'.decode('utf-8'))    # 中文

方法 len() 可以计算字符数,如果先转换为 bytes,再使用 len() 方法,则可以计算字节数

print(len('中文'))                  # 字符数为 2
print(len('中文'.encode('utf-8')))  # 字节数为 6

1个中文字符经过UTF-8编码后通常会占用3个字节,而1个英文字符只占用1个字节。


格式化

在这里插入图片描述

在这里插入图片描述


2.3.3、list 和 tuple

列表(list)

Python内置的一种数据类型是列表:listlist是一种有序的集合,可以随时添加和删除其中的元素。

在这里插入图片描述


元组(tuple)
tuplelist非常类似,但是tuple一旦初始化就不能修改

意义:因为tuple不可变,所以代码更安全。如果可能,能用tuple代替list就尽量用tuple

元组额外添加一个,来表示只有一个元素的元组,用来跟数字1进行区分
在这里插入图片描述

一种特殊的元组是可以修改元素值的,那就是包含 list 的元组

其实元组依然不变,元组依然指向一个固定的list,但该list中的元素修改了

在这里插入图片描述


2.3.4、条件判断

通过if进行条件判断,注意需要加上:,可以使用elseelif

age = 28
if age == 18:
    print("age is equal 18")
elif age < 18:
    print("age is less than 18")
else :
    print("age is greater than 18")

注意通过 input() 方法输入的为字符串,如果要进行比较,需要使用 int() 方法转换为数字

# 输入的数据类型为字符串
ageStr = input("Enter age: ")
# 需要使用 int() 方法将字符串转换为数字
age = int(ageStr)
if age == 18:
    print("age is equal 18")
elif age < 18:
    print("age is less than 18")
else :
    print("age is greater than 18")

2.3.5、模式匹配

可以使用 match 关键字进行模式匹配,来代替复杂的 if elif,例如

score = 'B'

match score:
    case 'A':
        print('score is A.')
    case 'B':
        print('score is B.')
    case 'C':
        print('score is C.')
    case _: # _表示匹配到其他任何情况
        print('score is ???.')

使用match语句时,我们依次用case xxx匹配,并且可以在最后(且仅能在最后)加一个case _表示“任意值”,代码较if ... elif ... else ...更易读。

同时还可以进行较为复杂的匹配

age = 15

match age:
    case x if x < 10:
        print(f'< 10 years old: {x}')
    case 10:
        print('10 years old.')
    case 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18:
        print('11~18 years old.')
    case 19:
        print('19 years old.')
    case _:
        print('not sure.')


同时match还可以匹配复杂列表

args = ['gcc', 'hello.c', 'world.c']
# args = ['clean']
# args = ['gcc']

match args:
    # 如果仅出现gcc,报错:
    case ['gcc']:
        print('gcc: missing source file(s).')
    # 出现gcc,且至少指定了一个文件:
    case ['gcc', file1, *files]:
        print('gcc compile: ' + file1 + ', ' + ', '.join(files))
    # 仅出现clean:
    case ['clean']:
        print('clean')
    case _:
        print('invalid command.')


2.3.6、循环

Python的循环有两种,一种是for...in循环,依次把listtuple中的每个元素迭代出来

sum = 0
for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
    sum = sum + x
print(sum)    # 55

Python提供一个range()函数,可以生成一个整数序列

print(list(range(5)))   # [0, 1, 2, 3, 4]

Python的第二种循环是while循环
可以使用break停止循环

n = 1
while n <= 100:
    if n > 10: # 当n = 11时,条件满足,执行break语句
        break # break语句会结束当前循环
    print(n)
    n = n + 1
print('END')

可以使用continue继续循环

n = 0
while n < 10:
    n = n + 1
    if n % 2 == 0: # 如果n是偶数,执行continue语句
        continue # continue语句会直接继续下一轮循环,后续的print()语句不会执行
    print(n)


2.3.7、使用dict和set

dict

dictPython内置的字典,类似其他语言的map

dictkey必须是不可变对象
key不能重复,新的value值会替代旧的value
因为dict根据key来计算value的存储位置,要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key

key = '12'
s2 = {'1':11, '2':22}
s2[key] = 88
print(s2)   # {'1': 11, '2': 22, '12': 88}
key = '99'
print(s2)   # {'1': 11, '2': 22, '12': 88}

list比较,dict有以下几个特点:

  • 查找和插入的速度极快,不会随着key的增加而变慢;
  • 需要占用大量的内存,内存浪费多。

list相反:

  • 查找和插入的时间随着元素的增加而增加;
  • 占用空间小,浪费内存很少。

set
setdict类似,也是一组key的集合,但不存储value。同样key也不能重复(重复数据自动被过滤)
add(xx)可以添加元素,remove(xx)可以删除元素

s = {1, 2, 3}
print(s)  # {1, 2, 3}
s.add(4)
s.remove(1)
print(s)  # {2, 3, 4}

2.3.8、小结

在这里插入图片描述


2.4、函数

2.4.1、调用函数

官方函数文档:Python官方函数文档


如果有报错,会给出报错信息


2.4.2、定义函数

Python中,定义一个函数要使用def语句,依次写出函数名、括号、括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回。

例如:

def my_abs(x):
    if x >= 0:
        return x
    else:
        return -x

print(my_abs(-99))


空函数
如果想定义一个什么事也不做的空函数,可以用pass语句:

def nop():
    pass

pass 的作用
pass语句什么都不做,那有什么用?实际上pass可以用来作为占位符,比如现在还没想好怎么写函数的代码,就可以先放一个pass,让代码能运行起来。


参数检查
调用函数时,如果参数个数不对,Python解释器会自动检查出来,并抛出TypeError

在这里插入图片描述


返回多个值

python 可以返回多个值,即组成了一个元组 turple
比如在游戏中经常需要从一个点移动到另一个点,给出坐标、位移和角度,就可以计算出新的坐标:

import math

def move(x, y, step, angle=0):
    nx = x + step * math.cos(angle)
    ny = y - step * math.sin(angle)
    return nx, ny

在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值


2.4.3、函数的参数

python 中的函数包含多种不同类型的参数

位置参数

定义:按顺序传递的参数,调用时必须按定义顺序传入。

例如:
在这里插入图片描述


可变参数
作用:接收任意数量的位置参数,内部存储为元组
语法:在参数前加 *。
示例:
在这里插入图片描述

关键字参数 (**kwargs)
作用:接收任意数量的关键字参数,内部存储为字典。
语法:在参数前加 **
示例:
在这里插入图片描述

命名关键字参数 (Keyword-only Arguments)
作用:强制要求某些参数必须通过关键字传递(提高代码可读性)。
语法:出现在 * 或 *args 之后的参数。
示例:
在这里插入图片描述


默认参数
定义:包含默认值的位置参数
语法:参数名=xxx
示例:
在这里插入图片描述


这5种参数都可以组合使用。但是请注意,参数定义的顺序必须是:
必选参数、默认参数、可变参数、命名关键字参数和关键字参数。


2.4.4、递归函数

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数

例如:

def fact(n):
    if n==1:
        return 1
    return n * fact(n - 1)

使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过**栈(stack)**这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出

解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。

尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。

例如:

def fact(n):
    return fact_iter(n, 1)

def fact_iter(num, product):
    if num == 1:
        return product
    return fact_iter(num - 1, num * product)

遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)函数改成尾递归方式,也会导致栈溢出。


2.5、高级特性

2.5.1、切片

Python中的切片操作允许你从序列类型(如列表、字符串、元组等)中高效地提取子序列。

L = ["1", "2", "3", "4"]
# L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。
print(L[0:3])    # ['1', '2', '3']
# 如果第一个索引是0,还可以省略:
print(L[:3])     # ['1', '2', '3']

2.5.2、迭代

如果给定一个listtuple,我们可以通过for循环来遍历这个listtuple,这种遍历我们称为迭代(Iteration)。

例如

L = ["1", "2", "3", "4"]
for x in L:
    print(x)

list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

在这里插入图片描述

注意
因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。


如果要对list实现类似Java那样的下标循环怎么办?
Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

# 0 A
# 1 B
# 2 C
for i, value in enumerate(['A', 'B', 'C']):
    print(i, value)

2.5.3、列表生成式

列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11))

print(list(range(1, 11)))   # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

还可以生成复杂的表达式

L2 = [x * 2 + 1 for x in range(1, 11)]
print(L2)   # [3, 5, 7, 9, 11, 13, 15, 17, 19, 21]

在一个列表生成式中,for前面的if ... else是表达式,而for后面的if是过滤条件,不能带else

L = [x if x % 2 == 0 else -x for x in range(1, 11)]
print(L)   # [-1, 2, -3, 4, -5, 6, -7, 8, -9, 10]

2.5.4、生成器

Python中,这种一边循环一边计算的机制,称为生成器:generator

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator
可以通过next()函数获得generator的下一个返回值:

L = (x * x for x in range(11))
# print(L)  会报错 <generator object <genexpr> at 0x000001DB661BAB50>
print(next(L))   # 0
# 因为生成器也是可遍历的对象,因此可以使用 for xx in xx 来进行便利
for x in L:
    print(x)

生成生成器的第二种方法,是使用关键字 yield
如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator函数,调用一个generator函数将返回一个generator

  • 普通函数是顺序执行,遇到return语句或者最后一行函数语句就返回。
  • generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
def odd():
    print('step 1')
    yield 1
    print('step 2')
    yield(3)
    print('step 3')
    yield(5)

L = odd()
print(next(L))  
print(next(L))
print(next(L))

# step 1
# 1
# step 2
# 3
# step 3
# 5

2.5.5、迭代器

可以直接作用于for循环的对象统称为可迭代对象:Iterable
可以被next()函数调用并不断返回下一个值的对象称为迭代器Iterator

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

PythonIterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

from collections.abc import Iterable
from collections.abc import Iterator

print(isinstance([], Iterable))                         # true
print(isinstance({}, Iterable))                         # true
print(isinstance((x for x in range(10)), Iterable))     # true
print(isinstance(100, Iterable))                        # false

print(isinstance([], Iterator))                         # false
print(isinstance({}, Iterator))                         # false
print(isinstance((x for x in range(10)), Iterator))     # true
print(isinstance(100, Iterator))                        # false

3、常见快捷键

快捷键作用
Ctrl + Alt + L代码格式化
Ctrl + ?代码行注释
Ctrl + D复制当前行
Ctrl + Y删除当前行
Shift + F6变量重命名
Ctrl + Shift + F全局查找
Ctrl + Shift + F10运行代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值