文章目录
1、前言
本篇博客,是我用来记录学习广告推荐算法的一些笔记和总结。
参考内容:
1、知乎文章:王喆:"深度"学习计算广告
2、deepseek
3、书籍:《计算广告》
2、学习笔记
2.1、广告概述
什么是广告?
- 定义:广告是由已确定的出资人通过各种媒介进行的有关产品(商品,服务和观点)的,通常是有偿的,有组织的,综合的,劝服性的非人员的信息传播活动。
- 目的:广告主通过媒体达到低成本的用户接触。
- 评价指标:投入产出比(
ROI
,return on investment),即某次广告活动的总产出与总投入的比例
一切付费的信息,产品或服务的传播途径,都是广告
在线广告:也称网络广告,互联网广告,指的是在线媒体上投放的广告。
免费模式:是将能够规模化,个性化传播信息的商品,以边际成本的价格出售。
边际成本(Marginal Cost)是经济学中的一个核心概念,指每额外生产一单位产品(或服务)所增加的总成本。简单来说,就是“多生产一个,需要多花多少钱”。
免费产品在传播信息的过程中,获得了三项可变现的核心资产,即流量,数据,影响力;
将这三项核心资产通过商业产品的形式转变为收入的过程,即商业化的过程。
无论是数据变现还是影响力变现,都依赖于流量变现的基础;而这个体系也就是计算广告技术所支撑的,现代的商业化产品体系。
- 流量:在互联网中,流量通常指 用户访问量或数据传输量,是衡量网站、APP、社交媒体等平台活跃度的核心指标。
- 数据:人在使用产品的过程中,留下的行为和属性。
- 影响力:产品或者内容获得了高于普通水准的关注与信任。
广告必须是有偿的,非人员的信息传播活动
有偿:使广告的目标变得明确
非人员:可以用计算的方法进行优化
2.2、广告的发展
展示广告:在互联网上展示横幅广告的产品形式为展示广告(display advertising)。
合约广告:展示广告的售卖模式为合约广告,即采用合同的方式约定某一个广告位在某一个时间段为特定广告主所独占
定向广告:对不同的受众呈现不同的广告创意
担保式投放:媒体和广告主约定广告位、时间段和投放量,并在此基础上确定合同的总金额以及量未达标的情况下的赔偿方案。
竞价广告:供给方只向广告主保证质,即单位流量的成本,但不再给出量的保证。对于每一次展示,则按照收益最高的简单原则进行决策。
上下文广告:将用户的搜索词换成正在页面中的关键词,可以将此产品从搜索结果页照搬到媒体页面上。
广告网络:(ad network,ADN)批量的运营媒体的广告位,按照人群或上下文标签签售卖给需求方,并用竞价的方式分配流量。广告网络的收费模式,主要以按点击收费(cost per click,CPC)模式为主
2.2、什么是计算广告系统?
计算广告系统的核心目标是通过数据、算法和技术,在合适的场景下,将最相关的广告精准推送给目标用户,同时实现广告主、媒体平台和用户之间的多方利益最大化。
核心内容 - 平衡三方利益
- 广告主:追求高转化率(如点击、购买),控制成本(如CPC、CPM)。
- 媒体平台:最大化广告收益(如通过竞价拍卖),同时保持用户体验。
- 用户:减少无关广告干扰,甚至获得有价值的信息(如个性化推荐)。
关键问题
- 如何动态分配广告位?
- 如何预估用户对广告的兴趣?
- 如何实时竞价(RTB)实现收益最大化?
核心组成部分
- 用户画像
通过用户行为数据(浏览、点击、购买等)、地理位置、设备信息等构建用户兴趣标签,用于定向投放。 - 广告库存管理
管理广告位资源(如网页横幅、App开屏、视频贴片),实时计算可用流量。 - 竞价与匹配引擎
实时竞价(RTB, Real-Time Bidding):在用户访问页面的瞬间,广告主通过平台(如Ad Exchange)竞价广告展示权。 - CTR/CVR预估
利用机器学习模型预测用户点击率(CTR)或转化率(CVR),决定广告排序。 - 效果评估与反馈
监测广告曝光、点击、转化等数据,通过A/B测试、归因分析优化模型。
2.2.1、核心概念
2.2.1.1、CTR(点击率)
在计算广告系统中,CTR
(Click-Through Rate,点击率) 是衡量广告效果的核心指标之一,直接影响广告的排序、投放策略和收益优化。
- 公式:CTR = 广告被点击次数 广告被展示次数 \dfrac{广告被点击次数}{广告被展示次数} 广告被展示次数广告被点击次数
- 意义:反映用户对广告的兴趣程度。
CTR
越高,广告越吸引目标用户。
2.2.1.2、CVR(转化率)
在计算广告系统中,CVR
(Conversion Rate,转化率) 是衡量广告效果的关键指标,用于评估用户点击广告后完成特定目标(如购买、注册、下载等)的概率。
- 公式:CVR = 转换次数 广告被点击次数 \dfrac{转换次数}{广告被点击次数} 广告被点击次数转换次数
- 意义:衡量广告的最终转化效果,例如:
– 电商场景:点击广告后购买商品的比例。
– 游戏推广:点击广告后下载并注册游戏的比例。 - CVR在广告系统中的作用:
– 广告排序与出价优化
在效果广告(如电商、效果类App推广)中,广告排序常基于eCPM = Bid × pCTR × pCVR
,其中:
pCVR
(预估转化率) 直接影响广告主的投资回报率(ROI
)。
高CVR
的广告即使出价较低,也可能胜出(例如高利润商品的广告)。
– 广告主策略调整
广告主通过CVR
优化投放策略(如定向人群、创意调整)。
平台通过CVR
预估帮助广告主控制成本(如oCPC
、oCPM
出价模式)。
– 平台收益与用户体验
精准的CVR
预估提升广告主满意度(避免无效投放),同时减少用户被低价值广告打扰。
2.2.1.3、RTB(实时竞价)
实时竞价(Real-Time Bidding, RTB
)是计算广告系统中程序化广告的核心技术之一,它通过实时拍卖机制,在毫秒级时间内完成广告展示机会的竞价和投放。
核心概念
RTB
是一种基于实时拍卖的广告交易模式。当用户访问网页或应用时,广告展示机会会被即时拍卖,广告主通过算法在极短时间内(通常100毫秒内)出价,价高者获得展示权。这种模式使广告投放更加精准、高效。
RTB的关键参与者
- 需求方平台(
DSP
)
Demand-Side Platform,服务于广告主或代理商,帮助其高效购买广告流量并优化投放效果。 - 供应方平台(
SSP
)
Supply-Side Platform,服务于发布商(媒体),帮助其高效管理、优化和变现广告库存(如网页广告位、APP开屏广告等),最大化广告收益。 - 广告交易平台(
Ad Exchange
)
作为RTB
的核心枢纽,连接DSP
和SSP
,负责实时竞价撮合。 - 数据管理平台(
DMP
)
提供用户画像、行为数据,辅助DSP
和SSP
进行精准定向。
RTB的流程
- 用户访问发布商网站,触发广告请求。
SSP
向Ad Exchange
发送请求及用户数据(如上下文、设备信息)。Ad Exchange
向多个DSP
发起竞价请求。DSP
基于用户画像和广告主预算实时出价。- 最高价广告赢得展示权,结果返回发布商页面(通常在100毫秒内完成)。
RTB与其他模式的对比
2.2.2、广告主,媒体平台和用户
广告主:需求方
- 核心目标:通过精准投放广告,最大化转化(如点击、购买)并控制成本,提升投资回报率(ROI)。
- 关键行为:广告创建,定向设置,预算与出价策略,效果监控
媒体平台:供给方
- 核心目标:最大化广告收入,同时保持用户体验以避免用户流失
- 关键行为:广告库存管理,竞价与拍卖机制,用户与场景分析,收益与体验平衡
用户:终端消费者
- 核心目标:减少无关广告干扰,甚至从广告中获取有价值的信息(如个性化推荐)
- 关键行为:主动信号,被动画像,隐私控制
- 传统广告:依赖人工销售(如固定位置、固定价格),资源利用率低。
- 计算广告:将广告投放转化为实时动态优化问题,通过算法自动匹配海量广告与海量用户。
2.2.3、广告系统的超集 - oCPM
2.2.3.1、广告投放流程
展示(Impressions)-> 点击(click)-> 激活(activate)-> 付费(Sales)
整个模式中分别存在:竞价点、计费点、出价点、考核点四个关键节点
在这套系统中,投放平台及广告主为了最大化自身利润,将投放过程中的计费节点放在整个过程中的不同位置,形成了CPM
、CPC
、CPA
等不同模式
2.2.3.2、CPM(千次展示成本)
在广告系统中,CPM
(Cost Per Mille,即每千次展示成本),按广告展现次数来收费,因为每次展现费用很小,约定乘以1000,即千次广告展现的费用。其计算方法如下:
C P M = ( 广告总成本 广告被展示次数 ) ∗ 1000 {CPM=(\dfrac{广告总成本}{广告被展示次数}) * 1000} CPM=(广告被展示次数广告总成本)∗1000
对于大型发行商来说,这是最好的定价模式,因为广告主只需根据广告位获得的曝光次数支付固定价格。
CPM
模式中,广告主根据曝光量出价,AdX
根据不同DSP
平台的m报价
进行竞价,最终流量平台也按照真实的广告曝光量进行收费。
2.2.3.3、CPC(每次点击费用)
按广告点击次数来收费,因为广告点击费用通常较大,故不用乘1000。
而在CPC
模式中,我们希望根据广告的实际点击次数,而非曝光次数进行收费,则将出价点及计费点都放在了c环节,但是为了方便不同计费模式共同竞价,我们在竞价时还是会将CPC
的出价折算成CPM
的费用来参与竞价。
转换公式: C P M = C P C ∗ p ( m − > c ) ∗ 1000 {CPM = CPC * p(m - > c) * 1000} CPM=CPC∗p(m−>c)∗1000
2.2.3.4、eCPM(每千次展示预期收益)
eCPM
(Effective Cost Per Mille)是广告主为每千次广告展示支付的预估费用,或发布者(媒体)通过广告获得的每千次展示收益。
e C P M = ( 广告总收益 广告被展示次数 ) ∗ 1000 {eCPM=(\dfrac{广告总收益}{广告被展示次数}) * 1000} eCPM=(广告被展示次数广告总收益)∗1000
- CPC(按点击付费): e C P M = C P C 出价 ∗ 预估点击率( C T R ) ∗ 1000 {eCPM=CPC 出价 * 预估点击率(CTR)* 1000} eCPM=CPC出价∗预估点击率(CTR)∗1000
- CPA(按转化付费): e C P M = C P A 出价 ∗ 预估点击率( C T R ) ∗ 预估转化率( C V R ) ∗ 1000 {eCPM=CPA出价 * 预估点击率(CTR)* 预估转化率(CVR) * 1000} eCPM=CPA出价∗预估点击率(CTR)∗预估转化率(CVR)∗1000
特点
静态预估:依赖历史数据或经验预设的CTR/CVR
,缺乏实时调整。
示例
这里虽然按照
eCPM
对推送顺序进行排序,但最终收费还是按照CPC来计费。同时,如果广告没有被用户点击,则投放平台不收广告主的钱。
2.2.3.5、oCPM(优化后的每千次展示成本 - 智能投放模式)
oCPM
(Optimized Cost Per Mille) 是一种基于智能优化的广告计费模式,是 CPM
的优化版本。
oCPM
通过算法动态调整广告出价,以更低的成本实现广告主设定的优化目标(如下载、注册、购买等转化行为)。
CPM
:Cost Per 1000 Impressions,千次展示成本
oCPM
:Optimized Cost Per 1000 Impressions,就是优化后的千次展示成本
核心思想:
为高价值用户支付更高价格,为低价值用户降低出价
动态优化:实时预测用户转化概率,调整出价。
从而提升广告投放的效率和效果。
工作原理
oCPM
结合了机器学习模型与实时竞价机制,具体流程如下:
- 设定优化目标
广告主指定核心目标(如点击、安装、下单),并设定预算和出价上限(如单次转化成本上限)。 - 预测用户转化概率
系统基于历史数据训练模型,预测当前用户的转化概率(如点击率CTR
、转化率CVR
)。 - 动态调整出价
根据预测结果,实时调整广告的千次展示出价 - 竞价与展示
在RTB
等竞价场景中,DSP
使用调整后的出价参与实时竞价,胜出广告获得展示机会。
一般来说,
oCPM
广告要求广告主提供一个转化目标的出价,即CPA
,那么一次广告展示的出价公式就是:
C P A = p C T R ∗ p C V R ∗ p a c i n g F a c t o r {CPA=pCTR*pCVR*pacingFactor} CPA=pCTR∗pCVR∗pacingFactor
pCTR
:系统预估的这次广告请求的点击率
pCVR
:预估转化率
pacingFactor
:进行广告预算平滑使用的pacing因子
示例
不同计费模式对比
实际应用中的选择
- 选择
eCPM
:广告主对自身广告的CTR/CVR
有充分信心,或需要完全控制出价逻辑(如品牌曝光)。 - 选择
oCPM
:追求转化效果(如下载、购买),且希望平台承担优化责任(如中小广告主)。
总结
oCPM
通过数据驱动的智能出价机制,将广告投放从买流量升级为买效果,成为效果广告的核心技术之一。
eCPM
是基础指标,直接反映广告的变现效率,适合简单透明的场景。oCPM
是智能升级版,通过机器学习实现“按效果付费”,适合追求ROI
最大化的广告主。
两者共同服务于广告系统的核心目标:在有限流量下,最大化平台收益,同时满足广告主需求。