消息传递图神经网络

消息传递范式
是一种聚合邻接节点信息来更新中心节点信息的范式
(1)邻接节点信息变换、(2)邻接节点信息聚合到中心节点、(3)聚合信息变换
x i ( k − 1 ) ∈ R F \mathbf{x}^{(k-1)}_i\in\mathbb{R}^F xi(k1)RF表示 ( k − 1 ) (k-1) (k1)层中节点 i i i的节点特征, e j , i ∈ R D \mathbf{e}_{j,i} \in \mathbb{R}^D ej,iRD 表示从节点 j j j到节点 i i i的边的特征,消息传递图神经网络可以描述为
x i ( k ) = γ ( k ) ( x i ( k − 1 ) , □ j ∈ N ( i )   ϕ ( k ) ( x i ( k − 1 ) , x j ( k − 1 ) , e j , i ) ) , \mathbf{x}_i^{(k)} = \gamma^{(k)} \left( \mathbf{x}_i^{(k-1)}, \square_{j \in \mathcal{N}(i)} \, \phi^{(k)}\left(\mathbf{x}_i^{(k-1)}, \mathbf{x}_j^{(k-1)},\mathbf{e}_{j,i}\right) \right), xi(k)=γ(k)(xi(k1),jN(i)ϕ(k)(xi(k1),xj(k1),ej,i)),
其中 □ \square 表示可微分的、具有排列不变性(函数输出结果与输入参数的排列无关)的函数。具有排列不变性的函数有,和函数、均值函数和最大值函数。 γ \gamma γ ϕ \phi ϕ表示可微分的函数,如MLPs(多层感知器)。此处内容来源于CREATING MESSAGE PASSING NETWORKS
Pytorch Geometric中的MessagePassing基类
Pytorch Geometric(PyG)提供了MessagePassing基类,它实现了消息传播的自动处理,继承该基类可使我们方便地构造消息传递图神经网络,我们只需定义函数 ϕ \phi ϕ,即message()函数,和函数 γ \gamma γ,即update()函数,以及使用的消息聚合方案,即aggr="add"aggr="mean"aggr="max"。这些是在以下方法的帮助下完成的:

  • MessagePassing(aggr="add", flow="source_to_target", node_dim=-2)

    • aggr:定义要使用的聚合方案(“add”、"mean "或 “max”);
    • flow:定义消息传递的流向("source_to_target "或 “target_to_source”);
    • node_dim:定义沿着哪个轴线传播。
  • MessagePassing.propagate(edge_index, size=None, **kwargs)

    • 开始传播消息的起始调用。它以edge_index(边的端点的索引)和flow(消息的流向)以及一些额外的数据为参数。
    • 请注意,propagate()不仅限于在形状为[N, N]的对称邻接矩阵中交换消息,还可以通过传递size=(N, M)作为额外参数。例如,在二部图的形状为[N, M]的一般稀疏分配矩阵中交换消息。
    • 如果设置size=None,则假定邻接矩阵是对称的。
    • 对于有两个独立的节点集合和索引集合的二部图,并且每个集合都持有自己的信息,我们可以传递一个元组参数,即x=(x_N, x_M),来标记信息的区分。
  • MessagePassing.message(...)

    • 首先确定要给节点 i i i传递消息的边的集合,如果flow="source_to_target",则是 ( j , i ) ∈ E (j,i) \in \mathcal{E} (j,i)E的边的集合;
    • 如果flow="target_to_source",则是 ( i , j ) ∈ E (i,j) \in \mathcal{E} (i,j)E的边的集合。
    • 接着为各条边创建要传递给节点 i i i的消息,即实现 ϕ \phi ϕ函数。
    • MessagePassing.message(...)函数接受最初传递给MessagePassing.propagate(edge_index, size=None, **kwargs)函数的所有参数。
    • 此外,传递给propagate()的张量可以被映射到各自的节点 i i i j j j上,只需在变量名后面加上_i_j。我们把 i i i称为消息传递的目标中心节点,把 j j j称为邻接节点。
  • MessagePassing.aggregate(...)

    • 将从源节点传递过来的消息聚合在目标节点上,一般可选的聚合方式有sum, meanmax
  • MessagePassing.message_and_aggregate(...)

    • 在一些场景里,邻接节点信息变换和邻接节点信息聚合这两项操作可以融合在一起,那么我们可以在此函数里定义这两项操作,从而让程序运行更加高效。
  • MessagePassing.update(aggr_out, ...):

    • 为每个节点 i ∈ V i \in \mathcal{V} iV更新节点表征,即实现 γ \gamma γ函数。该函数以聚合函数的输出为第一个参数,并接收所有传递给propagate()函数的参数。

    继承MessagePassing类的GCNConv
    GCNConv的数学定义为
    x i ( k ) = ∑ j ∈ N ( i ) ∪ { i } 1 deg ⁡ ( i ) ⋅ deg ⁡ ( j ) ⋅ ( Θ ⋅ x j ( k − 1 ) ) , \mathbf{x}_i^{(k)} = \sum_{j \in \mathcal{N}(i) \cup \{ i \}} \frac{1}{\sqrt{\deg(i)} \cdot \sqrt{\deg(j)}} \cdot \left( \mathbf{\Theta} \cdot \mathbf{x}_j^{(k-1)} \right), xi(k)=jN(i){i}deg(i) deg(j) 1(Θxj(k1)),
    其中,相邻节点的特征首先通过权重矩阵 Θ \mathbf{\Theta} Θ进行转换,然后按端点的度进行归一化处理,最后进行加总。这个公式可以分为以下几个步骤:

  1. 向邻接矩阵添加自环边。
  2. 线性转换节点特征矩阵。
  3. 计算归一化系数。
  4. 归一化 j j j中的节点特征。
  5. 将相邻节点特征相加("求和 "聚合)。

步骤1-3通常是在消息传递发生之前计算的。步骤4-5可以使用MessagePassing基类轻松处理。该层的全部实现如下所示

import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree

class GCNConv(MessagePassing):
    def __init__(self, in_channels, out_channels):
        super(GCNConv, self).__init__(aggr='add', flow='source_to_target')
        # "Add" aggregation (Step 5).
        # flow='source_to_target' 表示消息从源节点传播到目标节点
        self.lin = torch.nn.Linear(in_channels, out_channels)

    def forward(self, x, edge_index):
        # x has shape [N, in_channels]
        # edge_index has shape [2, E]

        # Step 1: Add self-loops to the adjacency matrix.
        edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))

        # Step 2: Linearly transform node feature matrix.
        x = self.lin(x)

        # Step 3: Compute normalization.
        row, col = edge_index
        deg = degree(col, x.size(0), dtype=x.dtype)
        deg_inv_sqrt = deg.pow(-0.5)
        norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]

        # Step 4-5: Start propagating messages.
        return self.propagate(edge_index, x=x, norm=norm)

    def message(self, x_j, norm):
        # x_j has shape [E, out_channels]
        # Step 4: Normalize node features.
        return norm.view(-1, 1) * x_j

GCNConv继承了MessagePassing并以"求和"作为领域节点信息聚合方式。该层的所有逻辑都发生在其forward()方法中。在这里,我们首先使用torch_geometric.utils.add_self_loops()函数向我们的边索引添加自循环边(步骤1),以及通过调用torch.nn.Linear实例对节点特征进行线性变换(步骤2)。

归一化系数是由每个节点的节点度得出的,它被转换为每个边的节点度。结果被保存在形状[num_edges,]的张量norm中(步骤3)。

message()函数中,我们需要通过norm对相邻节点特征x_j进行归一化处理。这里,x_j包含每条边的源节点特征,即每个中心节点的邻接。

这就是创建一个简单的x传递层的全部内容。我们可以把这个层作为深度架构的构建块。我们可以很方便地初始化和调用它:

conv = GCNConv(16, 32)
x = conv(x, edge_index)

propagate函数

def propagate(self, edge_index: Adj, size: Size = None, **kwargs):
    r"""开始消息传播的初始调用。
    Args:
        edge_index (Tensor or SparseTensor): 定义了消息传播流。
        	当flow="source_to_target"时,节点`edge_index[0]`的信息将被发送到节点`edge_index[1]`,
        	反之当flow="target_to_source"时,节点`edge_index[1]`的信息将被发送到节点`edge_index[0]`
        kwargs: 图其他属性或额外的数据。
    """

其他
Torch geometric GCNConv 源码分析

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值