【自然语言处理与大模型】个人使用LLaMA Factory微调的记录

一、魔塔社区免费服务器如何使用webui微调?

        一上来我就得先记录一下,使用魔塔社区的免费服务器的时候,因为没有提供ssh而导致无法看到webui的遗憾如何解决的问题?

执行命令

如果点这个链接无法弹出微调的webui,则可以在启动webui的命令之前设置了一些环境变量。

CUDA_VISIBLE_DEVICES=0 GRADIO_SHARE=1 GRADIO_SERVER_PORT=7860 llamafactory-cli webui
  • 通过 CUDA_VISIBLE_DEVICES=0,确保程序只使用编号为 0 的 GPU,避免占用其他 GPU 资源。
  • 使用 llamafactory-cli webui 启动一个基于 Gradio 框架的 Web 用户界面。
  • 通过 GRADIO_SHARE=1,生成一个公共 URL,允许其他人通过互联网访问你的 WebUI。
  • 通过 GRADIO_SERVER_PORT=7860,将 WebUI 的服务端口固定为 7860。 

【注】如果跳出来 Could not create share link. Missing file

那就按照它的提示,去下载这个文件,改名字,换路径,并改成可执行。

无法创建共享链接。缺少文件:`/root/.cache/huggingface/gradio/frpc/frpc_linux_amd64_v0.3`。请检查您的网络连接。如果您的杀毒软件阻止了该文件的下载,也可能导致此问题。您可以按照以下步骤手动安装:

1. 下载此文件:https://cdn-media.huggingface.co/frpc-gradio-0.3/frpc_linux_amd64
2. 将下载的文件重命名为:`frpc_linux_amd64_v0.3`
3. 将文件移动到以下位置:`/root/.cache/huggingface/gradio/frpc`
4. 给这个文件加上执行权限 chmod +x frpc_linux_amd64_v0.3

二、llamafactory工程文件目录里面都有是些什么?

目录结构

 “LLaMA-Factory”的项目目录结构。以下是对各个文件夹和文件的简要说明:

文件夹/文件简要说明
assets通常用于存放项目的静态资源,如图片、样式表等。
data用于存放数据集或模型训练所需的数据。
docker包含与Docker相关的配置文件和脚本,用于容器化部署。
evaluation可能包含评估模型性能的脚本和工具。
examples示例代码或使用案例,帮助用户了解如何使用该项目。
scripts脚本文件,自动化任务或辅助工具。
src源代码文件夹,存放项目的主程序代码。
tests测试文件夹,存放单元测试和其他测试脚本。
CITATION.cff引用格式文件,指导如何正确引用此项目。
LICENSE许可证文件,说明项目的使用许可条款。
Makefile构建文件,定义了编译和构建项目的规则。
MANIFEST.inPython打包工具(如setuptools)使用的文件,指定哪些文件应该被包含在发布包中。
pyproject.tomlPython项目配置文件,用于管理项目依赖和构建设置。
README.md项目的英文README文件,提供项目介绍和使用指南。
README_zh.md项目的中文README文件,提供项目介绍和使用指南。
requirements.txt列出项目运行所需的Python包及其版本。
setup.pyPython项目的安装脚本,用于打包和安装项目。

三、webui里面的微调参数的都是什么意思? 

虽然把界面设置成中文,基本都能读懂,但还是有必要对一些参数做点说明:

名字

解释

补充

模型路径

一般是服务器中存放模型的绝对路径。也可以是huggingface上面的模型标识符。

建议自己下载到本地,然后用本地服务器的绝对路径。

微调方法

常用就2个,LoRA和QLoRA

检查点路径

训练过后保存模型权重的路径,方便你做增量训练

量化等级

具体要损失多少精度,提升多少推理速度,常用有8bit、4bit量化等级

量化方法

实现量化的具体技术,比如线性量化或非线性量化

一般使用bitstandbytes开源量化库

对话模板

构建提示词使用的模板,要和你想微调的模型保持一致

日志间隔

默认是每5轮epoch保存一次日志

保存间隔

默认是每100epoch保存一次模型权重

会在每次保存权重之前,去跑一次验证

输出路径

输出路径就是保存你训练好的LoRA模型参数的路径。

一般是在一个叫做save/模型名字/lora下面,用chekpoint来命名,LoR模型无法单独使用

配置路径

配置路径的意思就是webui设置好的参数,生产一个yaml文件,可以用这个文件去等效的用在命令行中做微调训练

将webui的配置保存成一个yaml

验证集比例

在每一次保存权重之前做验证的时候用到

量化数据集

用来衡量量化前后

LoRA

LoRA训练中的秩大小,影响LoRa训练中自身数据对模型作用程度,秩越大作用越大,需要依据数据量选择合适的秩。

一般设置32到128之间默认8

LoRA缩放系数

LoRa训练中的缩放系数,用于调整初始化训练权重,使其与预训练权重接近或保持一致。

一般是LoRA两倍,一般设置个128、256

截断长度

单个训练数据样本的最大长度,超出配置长度将自动截断。

批处理大小

批次大小代表模型训练过程中,模型更新模型参数的数据步长,模型每看多少数据即更新一次模型参数。

合适batch size可以加速训练

deepspeed stage

选择分布式多卡训练模式

三种模式一般第二种

deepspeed offload

一部分数据显存放到内存

耗时间

四、直接使用webchat来和指定模型对话

        虽然可以在webui的chat中和指定的模型去对话。但llamafactory还单独给了一个命令,能够起一个webchat来加载模型进行对话。

llamafactory-cli webchat --model_name_or_path MODEL_NAME_OR_PATH
执行命令
llamafactory自带的webchat

五、使用cli train进行黑窗口微调训练的时候如何配置训练参数?

        这个问题看上去很简单,查一下官方文档不就好咯~或者看看example里面的yaml例子呗!说的很好!我们先来学习一下这两种方式:

(1)参考官方文档的配置文件

想直接看官方文档的请点击这里:llamafactory SFT 训练

llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml

        通过上面这行命令来开始训练,你会发现好简单,但紧接着就困惑了ymal配置文件里面的key都有哪些呀?都是什么意思呢?其实这一部分的答案就在官方文档中,官方贴心的给了一个小字提醒“重要训练参数”,还列了个表格方便你查阅。我就不要脸的直接复制在下面:

名称

描述

model_name_or_path

模型名称或路径

stage

训练阶段,可选: rm(reward modeling), pt(pretrain), sft(Supervised Fine-Tuning), PPO, DPO, KTO, ORPO

do_train

true用于训练, false用于评估

finetuning_type

微调方式。可选: freeze, lora, full

lora_target

采取LoRA方法的目标模块,默认值为 all

dataset

使用的数据集,使用”,”分隔多个数据集

template

数据集模板,请保证数据集模板与模型相对应。

output_dir

输出路径

logging_steps

日志输出步数间隔

save_steps

模型断点保存间隔

overwrite_output_dir

是否允许覆盖输出目录

per_device_train_batch_size

每个设备上训练的批次大小

gradient_accumulation_steps

梯度积累步数

max_grad_norm

梯度裁剪阈值

learning_rate

学习率

lr_scheduler_type

学习率曲线,可选 linearcosinepolynomialconstant 等。

num_train_epochs

训练周期数

bf16

是否使用 bf16 格式

warmup_ratio

学习率预热比例

warmup_steps

学习率预热步数

push_to_hub

是否推送模型到 Huggingface

【注】关键的问题来了——如果我还想配置得更细来进行训练呢?

(2)参考examples文件夹里面的yaml配置文件

# 全参数量微调的配置文件
LLaMA-Factory/examples/train_full

# LoRA微调的配置文件
LLaMA-Factory/examples/train_lora

# QLoRA微调的配置文件
LLaMA-Factory/examples/train_qlora

        配置文件的路径我给大家列出来了。里面有很多配置文件供你参考。但正是因为太多了,我都分不清这些配置文件都对应什么作用呀!?

        其实,人家仓库里面早就考虑到你会懵逼,所以贴心的在README.md文件里面写清楚了。这里拿最常用的LoRA举例子。

任务类型命令
(增量)预训练llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
指令监督微调llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
多模态指令监督微调llamafactory-cli train examples/train_lora/qwen2vl_lora_sft.yaml
DPO/ORPO/SimPO 训练llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
多模态 DPO/ORPO/SimPO 训练llamafactory-cli train examples/train_lora/qwen2vl_lora_dpo.yaml
奖励模型训练llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
PPO 训练llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
KTO 训练llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
预处理数据集llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
在 MMLU/CMMLU/C-Eval 上评估llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml

(3)参考webui生成的配置命令

        其实我最想讲的是这个!比如我训练到500轮保存了检查点后想休息一下,下次接着训练,但是我又不知道配置文件中怎么进行配置,才能实现接着上次的检查点训练。你或许会说你都有webui了为啥多次一举?那就是有这样的需求万一无法使用webui,只能用黑窗口,但又不知道怎么配置。这时候你可以用另一台可以使用webui的电脑,在webui上选好配置,然后生成

在去到配置文件中加上就行!

 后续持续更新有关使用llamafactory过程中的我觉得值得记录的内容。 

### 使用 Ollama 模型通过 LLama Factory 微调的最佳实践 #### 准备工作环境 为了确保能够顺利使用 Ollama 模型并对其进行微调,需要先安装必要的依赖库以及配置好开发环境。这通常涉及到设置 Python 环境,并安装特定版本的 PyTorch 和其他辅助工具。 #### 加载预训练模型 Ollama 提供了一系列高质量的基础模型,这些模型可以直接用于下游任务或是作为起点来进行进一步的定制化调整。加载 Ollama 的预训练模型可以通过官方 API 或者命令行接口完成[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "ollama/your_model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ``` #### 数据准备 对于任何机器学习项目来说,数据都是至关重要的部分。当计划对 Ollama 模型进行微调时,应该收集适合目标任务的数据集,并将其转换成可以被模型理解的形式。此过程可能涉及文本清理、分词以及其他形式的预处理操作。 #### 配置微调参数 LLama Factory 是一个专门为简化大型语言模型微调流程而设计的工作流框架。它允许用户轻松定义超参数、优化器选项和其他重要设置来指导整个训练过程。具体到 Ollama 模型上,则需根据实际情况设定诸如批量大小(batch size)、学习率(learning rate)等关键参数。 #### 开始微调 一旦完成了上述准备工作之后就可以启动实际的微调作业了。借助于 LLama Factory 所提供的便捷接口,只需几行代码就能实现这一点: ```bash llm-fine-tune \ --model ollama/your_model \ --dataset your_dataset_path \ --output_dir ./fine_tuned_output \ --num_train_epochs 3 \ --per_device_train_batch_size 8 \ --save_steps 500 \ --logging_steps 100 ``` #### 导出部署 经过充分迭代后的微调完成后,下一步就是保存最终版权重文件以便后续应用或分享给他人。此外还可以考虑将改进过的模型托管至云端服务从而更方便地集成进各种应用场景当中去。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值