在之前的文章中,我们已经学习了一元线性回归模型,其中最关键的参数是w和b。机器学习的目的就是去得到合适w和b后能准确预测未知数据。但现实世界是复杂的,一个事情的发生绝大多数时候不会是一个原因导致。
【机器学习300问】8、为什么要设计代价函数(损失函数)?它有什么用?http://t.csdnimg.cn/zuIfc
因此多元线性回归模型区别与一元线性回归主要的不同就在变量不再是w和b两个,而可以是,
,...,
,
多个变
在之前的文章中,我们已经学习了一元线性回归模型,其中最关键的参数是w和b。机器学习的目的就是去得到合适w和b后能准确预测未知数据。但现实世界是复杂的,一个事情的发生绝大多数时候不会是一个原因导致。
【机器学习300问】8、为什么要设计代价函数(损失函数)?它有什么用?http://t.csdnimg.cn/zuIfc
因此多元线性回归模型区别与一元线性回归主要的不同就在变量不再是w和b两个,而可以是,
,...,
,
多个变