整合如下,论文链接可直接点击model name跳转。
| model name | 网络构成 | 优点 |
| wide&deep | linear + DNN | 两种网络结合不但记忆性好且泛化性。 |
| deepFM | DNN + FM | 增加了低阶和高阶特征的交互。 |
| AFM | FM based attention | 为特征之间的交互的重要程度赋予权重,减弱不必要交互,使得特征交互更具灵活性。 |
| DCN | Cross + DNN | 显式高阶特征交互且交互过程中输入输出维度不变。 |
| xdeepFM | linear + CIN + DNN | 上升到vector级去除了field内bit级无关的交互。 |
| AutoInt | multi-head attention + DNN | 显式学习高阶特征交叉 |
| DIN | local activation unit + DNN | 使得用户兴趣多样化更好表达,减弱了无关用户兴趣对用户行为的影响。 |
| DIEN | GRU + (AI/A/AU)GRU + DNN | 挖掘用户潜在兴趣,增强了用户兴趣在演化过程中的相互作用。 |
ps:以上网络构成自己总结,并不是特别准确,比如local activation unit本质其实是一个dnn,只是有新的名字,仅供参考,有错请指正。优点也是自己总结的,有错指正或缺漏可以补充。
Wide & Deep Learning for Recommender Systems(2016.06)
Google
Overview
由wide部分和deep部分组成
Part 1
Wide Layer
线性模型
记忆性好
Part 2
Deep Layer
先embedding然后扔进dnn
泛化性好
最后把part1 跟 part2 的结果concat起来
Experiment
在一个实时的推荐系统Google play
评估的性能:app acquisitions / serving performance
app acquisitions
宽深模型对app store主页应用程序获取率增加了 3.9%

serving performance

本文综述了推荐系统中从Wide & Deep到Deep Interest Evolution Network的精排模型发展,包括DeepFM、xDeepFM、AutoInt等,强调了特征交互和注意力机制在模型中的应用,展示了如何通过不同的网络结构和方法提高推荐预测的性能。
最低0.47元/天 解锁文章
676

被折叠的 条评论
为什么被折叠?



