On the stochastic fundamental diagram for freeway traffic

该文探讨了如何解决交通流量-密度图(MFD)拟合的随机性问题,提出了一种加权最小二乘法结合随机速度-密度模型的方法。通过定义参数α,寻找第α百分位的速度-密度线,以更好地捕捉数据分布。文章通过实例验证了这种方法的有效性,并提供了工程化实现的二分法策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在做MFD相关的一些工作,但是面临一个问题,也就是Q-K曲线具有一定的随机性,如果单纯用一根曲线来拟合MFD,那么Q-K点势必是分布在曲线的两侧的,那么该如何解决该问题呢?其中一个办法就是随机MFD,《On the stochastic fundamental diagram for freeway traffic: Model development, analytical properties, validation, and extensive applications》这篇文章也就是来解决这一问题的。

1.文章概述

总的来说,文章提出了一种新的MFD拟合方式,这并不是提出了一种新的MFD形式,而是提出了一种考虑随机性的MFD拟合方式。在介绍这种方式之前需要先介绍一下加权最小二乘拟合MFD的方式。

  1. 优化方程如下所示:目的就是求解出 v f v_f vf K j a m K_{jam} Kjam,其中wi就是每个样本的权重,样本权重获取方式详细见论文,大致思想就是相邻两个状态的点之间距离越大就权重越大,这样越稀疏的地方就给予越大的权重。需要说明的是这里的公式都是greenshields模型,其他模型作者也给出了证明,没有放在这里了。
    在这里插入图片描述
  2. 求解出上面的优化方程就得到了 v f v_f vf K j a m K_{jam} Kjam,这样一来也就解决了MFD拟合问题。

在介绍完加权最小二乘方式拟合MFD后作者提出了一种Stochastic speed-density models,该模型首先定义了一个参数α,α的含义是使用calibrated percentile based curve 下面的点的残差比上所有数据的残差的比值。公式形式如下:
在这里插入图片描述
在这里插入图片描述
那么就带来了一个问题,如何去拟合得到the 100αth percentile based speed-density line,这个问题也就是我在用加权最小二乘方法拟合的时候,同时需要满足上面提到的α等式,作者证明了这样一个拟合求解问题等于下面的优化问题:
在这里插入图片描述
在之后作者又给出了很多这个方法的解析性质,包括Analytical properties: continuity, differentiability, and convexity。关于这些证明的内容在此不再阐述了,具体可以看文章。

2.实例验证

下图就是Greenshields Model用作者提出的the 100αth percentile based speed-density line标定的结果,α取不同的值就得到了不同的speed-density line,这些lines实际上就给出了给定密度条件下速度的一个分布。
在这里插入图片描述

3.工程化实现方式

part B中是给出了具体的数学公式来推导出优化方程,因此只需要实现这个优化方程便可以求解出随机MFD了,但是他给出的是speed-density公式的优化方程,这边我给出一种更容易实现的近似化方法。
总的来说使用二分法解决该优化问题。
input: 流密速数据、α

  1. 首先用所有数据进行最小二乘法拟合,得到MFD,根据论文中的公式计算得到α’;
  2. 若得到的α’>α,则取出MFD以下的所有点,使用这些点再次拟合得到新的MFD,得到新的α’;若得到的α’<α,则取出MFD以上的所有点,使用这些点再次拟合得到新的MFD,得到新的α’;若得到的α’==α,则终止,拟合得到MFD即αth percentile based MFD。
  3. 对于新得到的α’再次进行上述比较,除了step 2提到的情况,若新得到的α’介于α和上一次得到的α’之间,则取出两次MFD之间的点拟合新的MFD,得到α’。
  4. 重复step 3的过程,迭代终止条件可设置为这两个条件中的任意一个:1)迭代次数达到预设值的N次(e.g 30);2)α’与input的α小于X(e.g 3%)
  5. 输出最终得到MFD的参数即为αth percentile based MFD,同时输出最终的α’,若终止条件为2),则可以不输出α’

参考文献

[1] A, Q. X. , B, Z. J. , & C, W. S. . (2017). On the stochastic fundamental diagram for freeway traffic: model development, analytical properties, validation, and extensive applications - sciencedirect. Transportation Research Part B: Methodological, 104, 256-271.

The stochastic gradient descent (SGD) algorithm is a popular optimization algorithm used in machine learning. It is an iterative algorithm that updates the model parameters in small steps based on the gradient of the loss function with respect to the parameters. The algorithm works as follows: 1. Initialize the model parameters randomly. 2. Set the learning rate, which determines the step size of the updates. 3. For each training example: - Compute the gradient of the loss function with respect to the parameters using the current example. - Update the model parameters by subtracting the gradient multiplied by the learning rate. The key difference between SGD and regular gradient descent is that in SGD, the gradient is computed and the parameters are updated for each training example, rather than for the entire training set. This makes the algorithm faster and more scalable for large datasets. The stochastic aspect of the algorithm comes from the fact that the training examples are sampled randomly from the training set, rather than being processed in a fixed order. This randomness can help the algorithm escape from local minima and find better solutions. Here is the pseudocode for the SGD algorithm: ``` Input: Training set (X, Y), learning rate α, number of iterations T Output: Model parameters &theta; Initialize &theta; randomly for t = 1 to T do Sample a training example (x, y) from (X, Y) randomly Compute the gradient ∇&theta; L(&theta;; x, y) using the current example Update the parameters: &theta; ← &theta; - α * ∇&theta; L(&theta;; x, y) end for return &theta; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值