最近在做MFD相关的一些工作,但是面临一个问题,也就是Q-K曲线具有一定的随机性,如果单纯用一根曲线来拟合MFD,那么Q-K点势必是分布在曲线的两侧的,那么该如何解决该问题呢?其中一个办法就是随机MFD,《On the stochastic fundamental diagram for freeway traffic: Model development, analytical properties, validation, and extensive applications》这篇文章也就是来解决这一问题的。
1.文章概述
总的来说,文章提出了一种新的MFD拟合方式,这并不是提出了一种新的MFD形式,而是提出了一种考虑随机性的MFD拟合方式。在介绍这种方式之前需要先介绍一下加权最小二乘拟合MFD的方式。
- 优化方程如下所示:目的就是求解出
v
f
v_f
vf和
K
j
a
m
K_{jam}
Kjam,其中wi就是每个样本的权重,样本权重获取方式详细见论文,大致思想就是相邻两个状态的点之间距离越大就权重越大,这样越稀疏的地方就给予越大的权重。需要说明的是这里的公式都是greenshields模型,其他模型作者也给出了证明,没有放在这里了。
- 求解出上面的优化方程就得到了 v f v_f vf和 K j a m K_{jam} Kjam,这样一来也就解决了MFD拟合问题。
在介绍完加权最小二乘方式拟合MFD后作者提出了一种Stochastic speed-density models,该模型首先定义了一个参数α,α的含义是使用calibrated percentile based curve 下面的点的残差比上所有数据的残差的比值。公式形式如下:
那么就带来了一个问题,如何去拟合得到the 100αth percentile based speed-density line,这个问题也就是我在用加权最小二乘方法拟合的时候,同时需要满足上面提到的α等式,作者证明了这样一个拟合求解问题等于下面的优化问题:
在之后作者又给出了很多这个方法的解析性质,包括Analytical properties: continuity, differentiability, and convexity。关于这些证明的内容在此不再阐述了,具体可以看文章。
2.实例验证
下图就是Greenshields Model用作者提出的the 100αth percentile based speed-density line标定的结果,α取不同的值就得到了不同的speed-density line,这些lines实际上就给出了给定密度条件下速度的一个分布。
3.工程化实现方式
part B中是给出了具体的数学公式来推导出优化方程,因此只需要实现这个优化方程便可以求解出随机MFD了,但是他给出的是speed-density公式的优化方程,这边我给出一种更容易实现的近似化方法。
总的来说使用二分法解决该优化问题。
input: 流密速数据、α
- 首先用所有数据进行最小二乘法拟合,得到MFD,根据论文中的公式计算得到α’;
- 若得到的α’>α,则取出MFD以下的所有点,使用这些点再次拟合得到新的MFD,得到新的α’;若得到的α’<α,则取出MFD以上的所有点,使用这些点再次拟合得到新的MFD,得到新的α’;若得到的α’==α,则终止,拟合得到MFD即αth percentile based MFD。
- 对于新得到的α’再次进行上述比较,除了step 2提到的情况,若新得到的α’介于α和上一次得到的α’之间,则取出两次MFD之间的点拟合新的MFD,得到α’。
- 重复step 3的过程,迭代终止条件可设置为这两个条件中的任意一个:1)迭代次数达到预设值的N次(e.g 30);2)α’与input的α小于X(e.g 3%)
- 输出最终得到MFD的参数即为αth percentile based MFD,同时输出最终的α’,若终止条件为2),则可以不输出α’
参考文献
[1] A, Q. X. , B, Z. J. , & C, W. S. . (2017). On the stochastic fundamental diagram for freeway traffic: model development, analytical properties, validation, and extensive applications - sciencedirect. Transportation Research Part B: Methodological, 104, 256-271.