使用Streamlit构建纯LLM Chatbot WebUI傻瓜教程

使用Streamlit构建纯LLM Chatbot WebUI傻瓜教程

大量的大语言模型的WebUI基于Streamlit构建对话机器人Chatbot。Streamlit是一个用于构建数据科学和机器学习应用程序的开源Python库。它提供了一个简单的界面来快速创建交互式Web应用程序。Streamlit可以帮助将大型语言模型集成到Web界面中,以构建对话机器人Chatbot的WebUI。使用Streamlit API将大型语言模型集成到Web界面中,可以使用模型来回答用户的问题,并将回答显示在界面上。还可以添加其他功能,例如按钮、滑块等,以提供更多交互选项。
在这里插入图片描述

下面是使用Streamlit构建Chatbot WebUI的简单示例:

import streamlit as st

# 导入大语言模型

# 定义Chatbot的界面布局
st.title("Chatbot")
user_input = st.text_input("Ask a question")

# 模型回答用户的问题
answer = model.predict(user_input)

# 显示模型的回答
st.text_area("Answer", answer, height=200)

# 添加其他交互功能
# ...

代码地址: https://gitcode.net/qq_39813001/Streamlit

开发环境

本人在两个开发环境进行了实践,分别是aliyun PAI-DSW环境、InsCode环境。

hello Streatelit

import streamlit as st

st.write("Hello streamlit")

显示DataFrame数据

import streamlit as st
import numpy as np
import pandas as pd

st.title("第一个streamlit应用")
st.write("你好,streamlit")

df = pd.DataFrame({
  'first column': [5, 6, 7, 8],
  'second column': [50, 60, 70, 80]
})

df

显示地图

    map_data = pd.DataFrame(
        np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
        columns=['lat', 'lon'])

    col2.map(map_data)

WebUI左右布局设置

#增加左侧栏
st.sidebar.header('Streamlit cheat sheet')

#右侧栏,右侧在分为两列
col1, col2 = st.columns(2)

st.sidebar左侧布局

使用st.sidebar的方法设置。

st.sidebar.title("第一个streamlit应用")

if st.sidebar.checkbox('显示dataframe'):
    df = pd.DataFrame({
      'first column': [5, 6, 7, 8],
      'second column': [50, 60, 70, 80]
    })

    st.sidebar.write(df)

    option = st.sidebar.selectbox(
    'Which number do you like best?',
     df['first column'])

    'You selected: ', option
    

st.columns右侧布局

使用定义的col对象设置控件。

#绘制折线图
if col1.checkbox('显示折线图'):
    chart_data = pd.DataFrame(
         np.random.randn(20, 3),
         columns=['a', 'b', 'c'])

    col1.line_chart(chart_data)

#绘制一个地图
col2.subheader('显示地图')
if col2.checkbox('显示地图'):
    map_data = pd.DataFrame(
        np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
        columns=['lat', 'lon'])

    col2.map(map_data)

大语言模型LLM Chatbot WebUI

在这里插入图片描述

代码地址: https://gitcode.net/qq_39813001/Streamlit

设置Chatbot页面布局

st.sidebar.title("streamlit samples")中的sidebar会将页面处理成左右布局。在左侧页中,定义5个菜单用于切换右侧页面内容。通过if menu == menu1:响应切换事件,在函数体内

import streamlit as st
from streamlit_option_menu import option_menu
import numpy as np
import pandas as pd
import time

st.set_page_config(page_title="streamlit WebUI", layout="wide")
st.sidebar.title("streamlit samples")
st.write("你好,streamlit。请大家点个赞,给个关注。谢谢!博客:northd.blog.csdn.net")
menu1="显示dataframe"
menu2="显示折线图"
menu3="显示地图"
menu4="显示进度条"
menu5="大语言模型LLM对话框"

with st.sidebar:
    menu = option_menu("功能分类", [menu1, menu2,menu3,menu4,menu5],
        icons=['house', "list-task"],
        menu_icon="cast", default_index=0)
        
def main():
    if menu == menu1:
        st.subheader("数据列表")
        showdataframe()
       
    if menu == menu2:
        st.subheader("折线图")
        showLineChart()
       
    if menu == menu3:
        st.subheader("地图")
        showMap()
   
    if menu == menu4:
        st.subheader("显示进度条")
        showProgress()
    if menu == menu5:
        st.subheader("大语言模型LLM对话框")
        showLLMChatbot()
   
if __name__ == '__main__':
    main()

showdataframe()显示dataframe

def showdataframe():
        df = pd.DataFrame({
        'first column': [5, 6, 7, 8],
        'second column': [50, 60, 70, 80]
        })
        df
        option = st.selectbox(
        'Which number do you like best?',
        df['first column'])
        '你的选择项: ', option
        st.code('''
        df = pd.DataFrame({
        'first column': [5, 6, 7, 8],
        'second column': [50, 60, 70, 80]
        })
        df
        option = st.selectbox(
        'Which number do you like best?',
        df['first column'])
        '你的选择项: ', option
        ''')

showLineChart()显示折线图

def showLineChart():
    chart_data = pd.DataFrame(
        np.random.randn(20, 3),
        columns=['a', 'b', 'c'])
    st.line_chart(chart_data)
    st.code(
        '''
        chart_data = pd.DataFrame(
        np.random.randn(20, 3),
        columns=['a', 'b', 'c'])
        st.line_chart(chart_data)
        '''
    )

showMap()显示地图

def showMap():
    map_data = pd.DataFrame(
        np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
        columns=['lat', 'lon'])
    st.map(map_data)
   
    st.code(
        '''
        map_data = pd.DataFrame(
        np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
        columns=['lat', 'lon'])
        col2.map(map_data)
        '''
    )

showProgress()显示进度条

def showProgress():
    # Show a spinner during a process
    with st.spinner(text='In progress'):
        time.sleep(3)
        #st.success('进度执行中')
    # Show and update progress bar
    bar = st.progress(50)
    time.sleep(3)
    bar.progress(100)
    st.balloons()
    st.snow()
    st.toast('进度信息:Mr Stay-Puft')
    st.error('进度信息:Error message')
    st.warning('进度信息:Warning message')
    st.info('进度信息:Info message')
    st.success('进度信息:Success message')
    #st.exception(e)
    st.code(
        '''
            with st.spinner(text='In progress'):
        time.sleep(3)
    # Show and update progress bar
    bar = st.progress(50)
    time.sleep(3)
    bar.progress(100)
    st.balloons()
    st.snow()
    st.toast('进度信息:Mr Stay-Puft')
    st.error('进度信息:Error message')
    st.warning('进度信息:Warning message')
    st.info('进度信息:Info message')
    st.success('进度信息:Success message')
        '''
    )

showLLMChatbot()聊天机器人

def showLLMChatbot():
    st.title("💬 大语言LLM聊天机器人")
    st.caption("🚀 A streamlit chatbot")
   
    info = st.chat_input()
    st.chat_message('user').write(info)
    st.chat_message("assistant").write("请大家点个赞,给个关注。谢谢!博客:northd.blog.csdn.net")
    st.code(
        '''
        st.title("💬 大语言LLM聊天机器人")
    st.caption("🚀 A streamlit chatbot")
   
    info = st.chat_input()
    st.chat_message('user').write(info)
    st.chat_message("assistant").write("请大家点个赞,给个关注。谢谢!博客:northd.blog.csdn.net")
        '''
    )

代码地址: https://gitcode.net/qq_39813001/Streamlit

<think>好的,我现在需要解决用户的问题:“如何将openweb-ui功能通过h5实现”。首先,我要理解用户的需求。用户之前问过关于如何将DeepSeek知识库接入H5开发,现在转向另一个工具OpenWeb-UI,想了解如何将其功能在H5中实现。可能需要明确OpenWeb-UI是什么,但根据名字推测,这可能是一个开源的Web用户界面框架或工具,类似一些UI组件库。但不确定具体是什么,可能需要进一步验证。 首先,我需要确认OpenWeb-UI的定义。可能用户指的是某个特定的开源项目,比如OpenWebUI,一个可扩展的、功能丰富的AI用户界面,支持本地运行语言模型。或者可能是指其他的UI框架。假设用户指的是类似聊天界面的AI工具,可能用于与大模型交互,类似于之前的DeepSeek知识库接入。 接下来,用户希望将OpenWeb-UI的功能通过H5实现。H5即HTML5,通常指移动端网页开发。用户可能想在自己的H5应用中集成类似OpenWeb-UI的界面和功能,比如聊天机器人、交互式UI组件等。 需要拆解OpenWeb-UI的主要功能。比如,假设它包含聊天界面、消息展示、输入框、历史记录、与后端API交互等。那么,如何在H5中实现这些功能?可能需要前端开发技术,如HTML、CSS、JavaScript,结合Ajax或WebSocket与后端通信。 然后,思考用户可能的实际应用场景。用户可能是一个开发者,需要在H5页面中嵌入一个类似OpenWeb-UI的界面,用于用户与AI模型的交互,比如客服系统、智能助手等。用户可能希望了解具体步骤,包括界面设计、前后端交互、API调用等。 接下来,需要给出步骤。首先,明确OpenWeb-UI的核心功能,然后分解实现步骤:UI组件开发、前后端通信、数据渲染、状态管理等。如果OpenWeb-UI本身是开源项目,可能需要查看其文档,了解如何集成或参考其实现方式。 考虑到用户之前的问题是关于接入知识库,可能用户现在希望在前端实现更复杂的UI交互,而不仅仅是调用API。因此,回答需要涵盖UI构建和功能集成两个方面。 需要确保回答结构清晰,分步骤说明,包括可能的代码示例,如使用Vue或React框架构建组件,如何处理用户输入,如何与后端API交互,如何渲染响应数据等。同时,考虑到H5的移动端适配,可能需要提到响应式设计。 另外,用户可能关心如何维护状态,比如对话历史、用户身份验证等,这些也需要在步骤中涉及。此外,安全性问题,如跨域请求、API密钥保护,是否需要后端代理,这些也需要提及。 可能还需要对比之前的DeepSeek接入,指出异同点,帮助用户理解两者的区别和相似之处,但用户没有明确提到,所以可能不需要深入。 最后,总结关键点和注意事项,比如性能优化、兼容性测试、用户体验等,确保用户能够全面了解实现过程。</think>将 **OpenWebUI** 的功能通过 H5(HTML5)实现,通常是指利用 Web 技术(HTML/CSS/JavaScript)构建类似 OpenWebUI 的交互界面,并集成 AI 模型的对话、推理等功能。以下是具体实现步骤和核心要点: --- ### **1. 明确 OpenWebUI 的核心功能** OpenWebUI 是开源项目(如支持本地 LLM 的交互界面),其典型功能包括: - **对话界面**:用户输入、消息展示(类似聊天应用)。 - **模型交互**:调用本地或云端 AI 模型(如 LLaMA、GPT)。 - **历史管理**:保存/加载对话记录。 - **扩展功能**:插件支持、多模型切换、Markdown 渲染等。 --- ### **2. H5 实现流程** #### **步骤 1:构建前端界面(HTML/CSS)** - **基础结构**:创建聊天容器、消息展示区域、输入框、发送按钮。 ```html <div id="chat-container"> <div id="messages"> <!-- 消息动态插入 --> </div> <div class="input-area"> <input type="text" id="user-input" placeholder="输入问题..." /> <button onclick="sendMessage()">发送</button> </div> </div> ``` - **样式设计**:模仿 OpenWebUI 的视觉效果(CSS 或框架如 Tailwind)。 ```css #messages { height: 400px; overflow-y: auto; border: 1px solid #ddd; padding: 10px; } .message { margin: 5px; padding: 8px; border-radius: 10px; max-width: 80%; } .user-message { background: #e3f2fd; } .bot-message { background: #f5f5f5; } ``` #### **步骤 2:实现交互逻辑(JavaScript)** - **消息渲染**:动态插入用户和 AI 的消息。 ```javascript function addMessage(text, isUser) { const messagesDiv = document.getElementById('messages'); const message = document.createElement('div'); message.className = `message ${isUser ? 'user-message' : 'bot-message'}`; message.textContent = text; messagesDiv.appendChild(message); messagesDiv.scrollTop = messagesDiv.scrollHeight; // 滚动到底部 } ``` - **发送请求**:调用 AI 模型接口(本地或云端)。 ```javascript async function sendMessage() { const input = document.getElementById('user-input'); const userText = input.value.trim(); if (!userText) return; addMessage(userText, true); input.value = ''; // 调用后端 API(示例为本地模型接口) try { const response = await fetch('http://localhost:11434/api/generate', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ model: 'llama3', // 模型名称 prompt: userText, stream: false // 是否流式传输 }) }); const data = await response.json(); addMessage(data.response, false); } catch (error) { addMessage('请求失败,请重试。', false); } } ``` #### **步骤 3:集成模型后端** - **本地模型**:若使用本地部署的模型(如通过 Ollama),直接调用其 API。 - **云端模型**:若对接云端服务(如 OpenAI、DeepSeek),需通过后端代理(保护 API Key): ```javascript // 示例:Node.js 后端代理 const express = require('express'); const axios = require('axios'); const app = express(); app.use(express.json()); app.post('/api/chat', async (req, res) => { try { const { message } = req.body; const response = await axios.post('https://api.openai.com/v1/chat/completions', { model: 'gpt-4', messages: [{ role: 'user', content: message }] }, { headers: { Authorization: `Bearer YOUR_API_KEY` } }); res.json({ reply: response.data.choices[0].message.content }); } catch (error) { res.status(500).json({ error: '请求失败' }); } }); app.listen(3000, () => console.log('Server running on port 3000')); ``` #### **步骤 4:扩展功能** - **流式响应**:实现逐字输出(类似打字机效果)。 ```javascript // 修改 sendMessage 函数支持流式传输 async function sendMessage() { // ...(省略用户消息处理) const response = await fetch('http://localhost:11434/api/generate', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ model: 'llama3', prompt: userText, stream: true }) }); const reader = response.body.getReader(); const decoder = new TextDecoder(); let botMessage = ''; while (true) { const { done, value } = await reader.read(); if (done) break; const chunk = decoder.decode(value); const parsed = JSON.parse(chunk); botMessage += parsed.response; // 更新最后一条消息内容 messagesDiv.lastChild.textContent = botMessage; } } ``` - **历史记录**:使用 `localStorage` 或 IndexedDB 保存对话。 ```javascript // 保存历史 function saveHistory(messages) { localStorage.setItem('chatHistory', JSON.stringify(messages)); } // 加载历史 function loadHistory() { const history = localStorage.getItem('chatHistory'); return history ? JSON.parse(history) : []; } ``` --- ### **3. 注意事项** 1. **跨域问题**:直接调用外部 API 需配置 CORS,建议通过后端代理。 2. **性能优化**:流式传输减少等待时间,避免阻塞 UI。 3. **移动端适配**:使用响应式设计(如 `viewport` 设置、触摸事件处理)。 4. **安全性**: - 用户输入需过滤 XSS 攻击(如 `DOMPurify` 库)。 - 敏感接口(如 API Key)必须通过后端转发,不可暴露在前端。 --- ### **4. 技术栈参考** - **前端框架**:Vue/React 简化组件管理(如消息列表渲染)。 - **样式库**:Tailwind CSS 或 Material-UI 加速开发。 - **构建工具**:Webpack/Vite 打包优化。 - **部署**:静态资源托管(GitHub Pages、Netlify)。 --- 通过以上步骤,即可在 H5 中实现类似 OpenWebUI 的核心功能。若需复刻完整功能(如插件系统、多模型切换),需根据具体需求扩展架构设计。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

North_D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值