最长循环节

基准时间限制:1 秒 空间限制:131072 KB 分值: 20  难度:3级算法题
 收藏
 关注
正整数k的倒数1/k,写为10进制的小数如果为无限循环小数,则存在一个循环节,求<=n的数中,倒数循环节长度最长的那个数,假如存在多个最优的答案,输出所有答案中最大的那个数。

1/6= 0.1(6) 循环节长度为1
1/7= 0.(142857) 循环节长度为6
1/9= 0.(1)  循环节长度为1
Input
输入n(10 <= n <= 1000)
Output
输出<=n的数中倒数循环节长度最长的那个数
Input示例
10
Output示例
7
相关问题
最长的循环节 V2 
320
  1. 如果 1<=b<a ,a没有2或5的质因子,并且a与b互质,那么 b/a  的循环节位数恰好等于 min(10e1(moda)) ,e是正整数。
  2. 如果 1<=b<a ,a没有2或5的质因子,并且a与b互质,那么 b/a  的循环节位数必整除 ϕ(a)
#include<stdio.h>
int ans[1001];
int main()
{
    int n;
    scanf("%d",&n);
    ans[10]=7;
    int mx=6;
    for(int i=11;i<=n;i++)
    {
        int t=i;
        while(t%2==0)t/=2;
        while(t%5==0)t/=5;
        if(t==1)
        {
            ans[i]=ans[i-1];
            continue;
        }
        int sum=10,l=1;
        while(true)
        {
            sum=sum%t;
            if(sum==1)
                break;
            sum*=10;
            l++;
        }
        if(l>=mx)
        {
            mx=l;
            ans[i]=i;
        }
        else ans[i]=ans[i-1];
    }
    printf("%d\n",ans[n]);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值