基准时间限制:1 秒 空间限制:131072 KB 分值: 20
难度:3级算法题
正整数k的倒数1/k,写为10进制的小数如果为无限循环小数,则存在一个循环节,求<=n的数中,倒数循环节长度最长的那个数,假如存在多个最优的答案,输出所有答案中最大的那个数。
1/6= 0.1(6) 循环节长度为1
1/7= 0.(142857) 循环节长度为6
1/9= 0.(1) 循环节长度为1
Input
输入n(10 <= n <= 1000)
Output
输出<=n的数中倒数循环节长度最长的那个数
Input示例
10
Output示例
7
- 如果 1<=b<a ,a没有2或5的质因子,并且a与b互质,那么 b/a 的循环节位数恰好等于 min(10e≡1(moda)) ,e是正整数。
- 如果 1<=b<a ,a没有2或5的质因子,并且a与b互质,那么 b/a 的循环节位数必整除 ϕ(a) 。
#include<stdio.h>
int ans[1001];
int main()
{
int n;
scanf("%d",&n);
ans[10]=7;
int mx=6;
for(int i=11;i<=n;i++)
{
int t=i;
while(t%2==0)t/=2;
while(t%5==0)t/=5;
if(t==1)
{
ans[i]=ans[i-1];
continue;
}
int sum=10,l=1;
while(true)
{
sum=sum%t;
if(sum==1)
break;
sum*=10;
l++;
}
if(l>=mx)
{
mx=l;
ans[i]=i;
}
else ans[i]=ans[i-1];
}
printf("%d\n",ans[n]);
return 0;
}