机器学习算法基础第二天

本文介绍了机器学习中的特征选择,包括过滤式、嵌入式和包裹式方法,并以VarianceThreshold为例展示了如何删除低方差特征。接着详细讲解了PCA(主成分分析)的概念、作用和应用,通过实例说明PCA在数据降维中的效果。同时,文章提到了数据集的划分以及sklearn库中相关API的使用,最后列举了一些常见的分类和回归估计器。
摘要由CSDN通过智能技术生成

一.特征选择

定义:特征选择就是单纯地从提取到的所有特征中选择部分特征作为训练集特征,特征在选择前和选择后可以改变值、也不改变值,但是选择后的特征维数肯定比选择前小,毕竟我们只选择了其中的一部分特征。

主要方法:
①Filter(过滤式):VarianceThreshold
② Embedded(嵌入式):正则化、决策树
③ Wrapper(包裹式)

sklearn特征选择API: sklearn.feature_selection.VarianceThreshold
在这里插入图片描述
输出结果:
在这里插入图片描述
删除低方差的目的:因为当方差较低时,此特征比较接近,不易于区分或者区分后意义不大。

VarianceThreshold语法:
VarianceThreshold(threshold = 0.0) #删除所有低方差特征
Variance.fit_transform(X,y) ,X:numpy array格式的数据[n_samples,n_features],返回值:训练集差异低于threshold的特征将被删除。默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征。

二.PCA(主成分分析)

2.1
本质:PCA是一种分析、简化数据集的技术。用于特征数量达到上百时,考虑数据的简化。高维度数据容易出现的问题:特征之间通常是线性相关
目的:是数据维数压缩,尽可能降低原数据的维数(复杂度),损失少量信息。
作用:可以削减回归分析或者聚类分析中特征的数量。

示例:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值