深度学习
深度学习发展趋势
1958: Perceptron (linear model)
1969: Perceptron has limitation
1980s: Multi-layer perceptron
Do not have significant difference from DNN today
1986: Backpropagation
Usually more than 3 hidden layers is not helpful
1989: 1 hidden layer is “good enough”, why deep?
2006: RBM initialization (breakthrough)
2009: GPU
2011: Start to be popular in speech recognition
2012: win ILSVRC image competition 感知机(Perceptron)非常像我们的逻辑回归(Logistics Regression)只不过是没有sigmoid激活函数。09年的GPU的发展是很关键的,使用GPU矩阵运算节省了很多的时间。
深度学习的三个步骤
- Step1:神经网络(Neural network)
- Step2:模型评估(Goodness of function)
- Step3:选择最优函数(Pick best function)
Step1:神经网络
神经网络(Neural network)里面的节点,类似神经元。
神经网络也可以有很多不同的连接方式,这样就会产生不同的结构(structure)在这个神经网络里面,有很多逻辑回归函数,其中每个逻辑回归都有自己的权重和自己的偏差,这些权重和偏差就是参数。 那这些神经元都是通过什么方式连接的呢?其实连接方式都是你手动去设计的。
完全连接前馈神经网络
概念:前馈(feedforward)也可以称为前向,从信号流向来理解就是输入信号进入网络后,信号流动是单向的,即信号从前一层流向后一层,一直到输出层,其中任意两层之间的连接并没有反馈(feedback),亦即信号没有从后一层又返回到前一层。
一个神经网络如果权重和偏差都知道的话就可以看成一个函数,他的输入是一个向量,对应的输出也是一个向量。不论是做回归模型(linear model)还是逻辑回归(logistics regression)都是定义了一个函数集(function set)。我们可以给上面的结构的参数设置为不同的数,就是不同的函数(function)。这些可能的函数(function)结合起来就是一个函数集(function set)。这个时候你的函数集(function set)是比较大的,是以前的回归模型(linear model)等没有办法包含的函数(function),所以说深度学习(Deep Learning)能表达出以前所不能表达的情况。
随着层数变多,错误率降低,随之运算量增大,通常都是超过亿万级的计算。对于这样复杂的结构,我们一定不会一个一个的计算,对于亿万级的计算,使用loop循环效率很低。
这里我们就引入矩阵计算(Matrix Operation)能使得我们的运算的速度以及效率高很多:
矩阵计算
其中sigmoid更一般的来说是激活函数(activation function),现在已经很少用sigmoid来当做激活函数。
把隐藏层通过特征提取来替代原来的特征工程,这样在最后一个隐藏层输出的就是一组新的特征(相当于黑箱操作)而对于输出层,其实是把前面的隐藏层的输出当做输入(经过特征提取得到的一组最好的特征)然后通过一个多分类器(可以是softmax函数)得到最后的输出y。
示例:手写数字识别
举一个手写数字体识别的例子: 输入:一个16*16=256维的向量,每个pixel对应一个dimension,有颜色用(ink)用1表示,没有颜色(no ink)用0表示 输出:10个维度,每个维度代表一个数字的置信度。
从输出结果来看,每一个维度对应输出一个数字,是数字2的概率为0.7的概率最大。说明这张图片是2的可能性就是最大的
在这个问题中,唯一需要的就是一个函数,输入是256维的向量,输出是10维的向量,我们所需要求的函数就是神经网络这个函数
从上图看神经网络的结构决定了函数集(function set),所以说网络结构(network structured)很关键。
Step2: 模型评估
对于模型的评估,我们一般采用损失函数来反应模型的好差,所以对于神经网络来说,我们采用交叉熵(cross entropy)函数来对yyy和y\hat{y}y的损失进行计算,接下来我们就是调整参数,让交叉熵越小越好。
对于损失,我们不单单要计算一笔数据的,而是要计算整体所有训练数据的损失,然后把所有的训练数据的损失都加起来,得到一个总体损失L。接下来就是在function set里面找到一组函数能最小化这个总体损失L,或者是找一组神经网络的参数θ,来最小化总体损失L
Step3:选择最优函数
具体流程:θ是一组包含权重和偏差的参数集合,随机找一个初试值,接下来计算一下每个参数对应偏微分,得到的一个偏微分的集合∇L就是梯度,有了这些偏微分,我们就可以不断更新梯度得到新的参数,这样不断反复进行,就能得到一组最好的参数使得损失函数的值最小
反向传播
在神经网络中计算损失最好的方法就是反向传播,我们可以用很多框架来进行计算损失,比如说TensorFlow,theano,Pytorch等等
损失函数(Loss function)是定义在单个训练样本上的,也就是就算一个样本的误差,比如我们想要分类,就是预测的类别和实际类别的区别,是一个样本的,用L表示。
代价函数(Cost function)是定义在整个训练集上面的,也就是所有样本的误差的总和的平均,也就是损失函数的总和的平均,有没有这个平均其实不会影响最后的参数的求解结果。
总体损失函数(Total loss function)是定义在整个训练集上面的,也就是所有样本的误差的总和。也就是平时我们反向传播需要最小化的值。
对于L(θ)就是所有ln的损失之和,所以如果要算每个L(θ)的偏微分,我们只要算每个ln的偏微分,再把所有ln偏微分的结果加起来就是L(θ)的偏微分,所以等下我们只计算每个ln的偏微分。 我们先在整个神经网络(Neural network)中抽取出一小部分的神经(Neuron)去看(也就是红色标注的地方):
给到 θ \theta θ(weight and bias)
先选择一个初始的 θ 0 \theta^0 θ0,计算 θ 0 \theta^0 θ0 的损失函数(Loss Function)设一个参数的偏微分
计算完这个向量(vector)偏微分,然后就可以去更新 θ θ \thetaθ θθ
由于模型常常有百万级别的参数(millions of parameters)
反向传播(Backpropagation)是一个比较有效率的算法,让你计算梯度(Gradient) 的向量(Vector)时,可以有效率的计算出来
chain rule
反向传播
取出一个Neuron进行分析
从这一小部分中去看,把计算梯度分成两个部分
计算
∂
z
∂
w
\frac{\partial z}{\partial w}
∂w∂z(Forward pass的部分)
计算
∂
l
∂
z
\frac{\partial l}{\partial z}
∂z∂l( Backward pass的部分 )
forward pass
根据求微分原理,forward pass的运算规律就是:
∂
z
∂
w
1
=
x
1
\frac{\partial z}{\partial w_1} = x_1
∂w1∂z=x1
∂
z
∂
w
2
=
x
2
\frac{\partial z}{\partial w_2} = x_2
∂w2∂z=x2
这里计算得到的x1和x2恰好就是输入的x1和x2
backward pass
(Backward pass的部分)这就很困难复杂因为我们的l是最后一层: 那怎么计算
∂
l
∂
z
\frac{\partial l}{\partial z}
∂z∂l(Backward pass的部分)这就很困难复杂因为l是最后一层:
以此类推