cold-start problem(推荐系统)

冷启动是在群体推荐系统中一个常见的问题。

简单来说它是推荐过程中没有足够的信息来对用户进行可靠的推荐。

推荐系统是基于用户和产品的信息和交互,对信息进行过滤并达到向用户精准推荐其感兴趣的某些信息的一种技术。
推荐系统基于用户的个人资料,人—物交互过程及其条目的特征等进行推荐。

  • 如果是基于内容推荐(content—based ),则需要对items建模,分析其特征,将用户以往感兴趣的items与其他所有items比较,找到相似特征的items,来进行推荐。
    如下图:
    在这里插入图片描述

  • 如果是基于协同过滤(collaborative filtering),则不考虑items的特征,只注重人—items的交互过程,利用行为的相似性来进行推荐。
    在这里插入图片描述

由于上述都需要借鉴历史数据,所以会造成冷启动问题。

冷启动的三个类型:

  1. 新平台:
    例如一个新的网上购物网站,只有各种商品网站,但无用户,无商品购买记录,信息缺乏。

  2. 新条目:
    例如新商品,新书目等等
    由于新条目缺乏访问的次数,会导致推荐不准确,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值