Kakfa架构解析——初步

一、基础架构

在这里插入图片描述

  • Producer :消息生产者,也就是向kafka broker发送消息的客户端
  • Consumer :消息消费者,也就是向kafka broker拉取消息的客户端
  • Consumer Group :消费者组,由多个consumer组成。消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个消费者消费;消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。
  • Broker :一台kafka服务器就是一个broker。一个集群由多个broker组成。一个broker可以容纳多个topic
  • Topic :可以理解为一个队列,生产者和消费者面向的都是一个topic
  • Partition:为了实现扩展性,一个非常大的topic可以分布到多个broker上,一个topic可以分为多个partition,每个partition是一个有序的队列
  • Replica:副本,为保证集群中的某个节点发生故障时,该节点上的partition数据不丢失,且kafka仍然能够继续工作,kafka提供了副本机制,一个topic的每个分区都有若干个副本,一个leader和若干个follower
  • leader:每个分区多个副本的“主”,生产者发送数据的对象,以及消费者消费数据的对象都是leader
  • follower:每个分区多个副本中的“从”,实时从leader中同步数据,保持和leader数据的同步。leader发生故障时,某个follower会成为新的leader

二、深入了解

在这里插入图片描述
上面说到:Kafka中消息是以topic进行分类的,Producer 和Consumer都是面向topic的。(topic是逻辑上的概念,而partition是物理上的概念)

  • 每个partition对应于一个log文件,该log文件中存储的就是producer生产的数据。这些数据会以追加的方式写入log文件的末端,且都有其对应的offset。consumer会实施记录自己消费数据对应的offset以便恢复。

    当数据过多时,为防止log文件过大导致数据定位效率低下,Kafka采取了分片和索引机制。
    如上图,每个partition分为多个segment,每个segment对应 log 和 index 文件。这两个文件位于一个文件夹下(命名规则为:topic名称+分区序号)
  • “.index”文件存储大量的索引信息,“.log”文件存储大量的数据,索引文件中的元数据指向对应数据文件中message的物理偏移地址。

2.1 Producer

2.1.1 分区
  1. 原因:
    ①方便在集群中扩展(每个Partition可以通过调整以适应它所在的机器,因此整个集群就可以适应任意大小的数据了)
    ②可以提高并发(可以以Partition为单位读写了)
  2. 原则:我们需要将producer发送的数据封装成一个ProducerRecord对象。
    ①指明 partition 的情况下,直接将指明的值直接作为 partiton 值
    ②没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值
    ③既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin 算法
2.1.2 数据可靠性保证

为保证producer发送的数据,能可靠的发送到指定的topic,topic的每个partition收到producer发送的数据后,都需要向producer发送ack(acknowledgement确认收到),如果producer收到ack,就会进行下一轮的发送,否则重新发送数据。
在这里插入图片描述

  • 对于副本数据同步,Kafka采用了全部完成同步才发送ack。

那么,如果某个follower因为故障迟迟不能与leader进行同步,该如何解决?

  • Leader维护了一个动态的in-sync replica set (ISR),也就是一个动态的follower集合。
  • 当ISR中的follower完成数据的同步之后,leader就会给producer发送ack。
  • 如果follower长时间未向leader同步数据,则该follower将被踢出ISR,该时间阈值由replica.lag.time.max.ms参数设定。
  • Leader发生故障之后,就会从ISR中选举新的leader。
ack应答机制三种级别
  • 0:producer不等待broker的ack,这一操作提供了一个最低的延迟,broker一接收到还没有写入磁盘就已经返回,当broker故障时有可能丢失数据
  • 1:producer等待broker的ack,partition的leader落盘成功后返回ack,如果在follower同步成功之前leader故障,那么将会丢失数据
  • -1(all):producer等待broker的ack,partition的leader和follower全部落盘成功后才返回ack。但是如果在follower同步完成后,broker发送ack之前,leader发生故障,那么会造成数据重复
故障处理

在这里插入图片描述

  • follower发生故障后会被临时踢出 ISR,待该 follower 恢复后,follower 会读取本地磁盘记录的上次的HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 leader 进行同步。等该 follower 的 LEO 大于等于该 Partition 的 HW,即 follower 追上 leader 之后,就可以重新加入 ISR 了
  • leader 发生故障之后,会从 ISR 中选出一个新的 leader,之后,为保证多个副本之间的数据一致性,其余的follower会先将各自的log文件高于HW的部分截掉,然后从新的leader同步数据
    此时,只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复
2.1.3 Exactly Once

上面说过ACK的三种级别。其中设置为-1,可以保证Producer到Server之间不会丢失数据,即At Least Once语义;设置为0,可以保证生产者每条消息只会被发送一次,即At Most Once语义。

At Least Once可以保证数据不丢失,但是不能保证数据不重复;相对的,At Least Once可以保证数据不重复,但是不能保证数据不丢失。

0.11版本的Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指Producer不论向Server发送多少次重复数据,Server端都只会持久化一条。也就能达到Exactly Once语义。(幂等性无法保证跨分区跨会话的Exactly Once)

2.2 Consumer

2.2.1 消费方式

consumer采用pull(拉)模式从broker中读取数据。

pull模式不足之处是,如果kafka没有数据,消费者可能会陷入循环中,一直返回空数据。针对这一点,Kafka的消费者在消费数据时会传入一个时长参数timeout,如果当前没有数据可供消费,consumer会等待一段时间之后再返回,这段时长即为timeout。

2.2.3 offset的维护

由于consumer在消费过程中可能会出现断电宕机等故障,consumer恢复后,需要从故障前的位置的继续消费,所以consumer需要实时记录自己消费到了哪个offset,以便故障恢复后继续消费。

从0.9版本开始,consumer默认将offset保存在Kafka一个内置的topic中,该topic为__consumer_offsets。

2.3 Kafka高效读写

  • 顺序写磁盘

  • 应用Pagecache

    Kafka数据持久化是直接持久化到Pagecache中,这样会产生以下几个好处:

     I/O Scheduler 会将连续的小块写组装成大块的物理写从而提高性能
     I/O Scheduler 会尝试将一些写操作重新按顺序排好,从而减少磁盘头的移动时间
     充分利用所有空闲内存(非 JVM 内存)。如果使用应用层 Cache(即 JVM 堆内存),会增加 GC 负担
     读操作可直接在 Page Cache 内进行。如果消费和生产速度相当,甚至不需要通过物理磁盘(直接通过 Page Cache)交换数据
     如果进程重启,JVM 内的 Cache 会失效,但 Page Cache 仍然可用

  • 零复制技术
    数据直接在内核完成输入和输出,不需要拷贝到用户空间再写出去。
    kafka数据写入磁盘前,数据先写到进程的内存空间。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值