第四章+分组

第四章 分组

在这里插入图片描述

import numpy as np
import pandas as pd

一、分组模式及其对象

1. 分组的一般模式

分组操作在日常生活中使用极其广泛,例如:

  • 依据 性 别 \color{#FF0000}{性别} 分组,统计全国人口 寿 命 \color{#00FF00}{寿命} 寿 平 均 值 \color{#0000FF}{平均值}
  • 依据 季 节 \color{#FF0000}{季节} 分组,对每一个季节的 温 度 \color{#00FF00}{温度} 进行 组 内 标 准 化 \color{#0000FF}{组内标准化}
  • 依据 班 级 \color{#FF0000}{班级} 筛选出组内 数 学 分 数 \color{#00FF00}{数学分数} 平 均 值 超 过 80 分 的 班 级 \color{#0000FF}{平均值超过80分的班级} 80

从上述的几个例子中不难看出,想要实现分组操作,必须明确三个要素: 分 组 依 据 \color{#FF0000}{分组依据} 数 据 来 源 \color{#00FF00}{数据来源} 操 作 及 其 返 回 结 果 \color{#0000FF}{操作及其返回结果} 。同时从充分性的角度来说,如果明确了这三方面,就能确定一个分组操作,从而分组代码的一般模式即:

df.groupby(分组依据)[数据来源].使用操作

例如第一个例子中的代码就应该如下:

df.groupby('Gender')['Longevity'].mean()

现在返回到学生体测的数据集上,如果想要按照性别统计身高中位数,就可以如下写出:

df = pd.read_csv('../data/learn_pandas.csv')
df.groupby('Gender')['Height'].median()
Gender
Female    159.6
Male      173.4
Name: Height, dtype: float64

2. 分组依据的本质

前面提到的若干例子都是以单一维度进行分组的,比如根据性别,如果现在需要根据多个维度进行分组,该如何做?事实上,只需在groupby中传入相应列名构成的列表即可。例如,现想根据学校和性别进行分组,统计身高的均值就可以如下写出:

df.groupby(['School', 'Gender'])['Height'].mean()
School                         Gender
Fudan University               Female    158.776923
                               Male      174.212500
Peking University              Female    158.666667
                               Male      172.030000
Shanghai Jiao Tong University  Female    159.122500
                               Male      176.760000
Tsinghua University            Female    159.753333
                               Male      171.638889
Name: Height, dtype: float64

目前为止,groupby的分组依据都是直接可以从列中按照名字获取的,那如果想要通过一定的复杂逻辑来分组,例如根据学生体重是否超过总体均值来分组,同样还是计算身高的均值。

首先应该先写出分组条件:

condition = df.Weight > df.Weight.mean()

然后将其传入groupby中:

【练一练】

🤔。四分位点

【END】

从索引可以看出,其实最后产生的结果就是按照条件列表中元素的值(此处是TrueFalse)来分组,下面用随机传入字母序列来验证这一想法:

df.groupby(condition)['Height'].mean()
Weight
False    159.034646
True     172.705357
Name: Height, dtype: float64
#练一练
low = df.Weight < df.Weight.quantile(1/3)
#norm = df.Weight.quantile(1/3) < df.Weight < df.Weight.quantile(2/3)
#high = df.Weight > df.Weight.quantile(2/3)
df.groupby(low)['Height'].mean()
#df.groupby(norm)['Height'].mean()
#df.groupby(high)['Height'].mean()

Weight
False    167.085484
True     155.089831
Name: Height, dtype: float64
high = df.Weight > df.Weight.quantile(2/3)
df.groupby(high)['Height'].mean()
Weight
False    159.034646
True     172.705357
Name: Height, dtype: float64
norm = df.Weight < df.Weight.quantile(2/3)
df.groupby(high)['Height'].mean()
Weight
False    159.034646
True     172.705357
Name: Height, dtype: float64
df['Weight'].quantile([1/3,2/3])
0.333333    48.0
0.666667    55.0
Name: Weight, dtype: float64
item = np.random.choice(list('ab'), df.shape[0])###在abc当中,有放回随机抽取200次
df.groupby(item)['Height'].mean()
a    162.660000
b    163.820455
Name: Height, dtype: float64
 np.random.choice(list('ab'),df.shape[0])
array(['b', 'b', 'a', 'b', 'b', 'a', 'b', 'a', 'a', 'a', 'a', 'a', 'a',
       'b', 'b', 'b', 'b', 'a', 'a', 'a', 'a', 'a', 'b', 'b', 'a', 'b',
       'a', 'a', 'a', 'a', 'a', 'b', 'a', 'a', 'a', 'a', 'a', 'a', 'b',
       'a', 'a', 'b', 'a', 'a', 'b', 'a', 'a', 'b', 'b', 'a', 'b', 'b',
       'b', 'b', 'a', 'b', 'a', 'a', 'b', 'a', 'b', 'a', 'a', 'b', 'b',
       'a', 'a', 'a', 'b', 'b', 'a', 'a', 'b', 'a', 'a', 'b', 'a', 'b',
       'a', 'b', 'a', 'a', 'a', 'b', 'a', 'a', 'a', 'a', 'a', 'b', 'b',
       'a', 'a', 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'a', 'a', 'b', 'a',
       'b', 'b', 'a', 'b', 'a', 'a', 'a', 'b', 'a', 'b', 'a', 'b', 'a',
       'b', 'b', 'a', 'a', 'b', 'b', 'b', 'a', 'b', 'a', 'a', 'a', 'a',
       'b', 'a', 'a', 'a', 'b', 'b', 'a', 'a', 'a', 'a', 'a', 'b', 'a',
       'b', 'a', 'b', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'a', 'b', 'a',
       'a', 'b', 'a', 'a', 'b', 'b', 'b', 'b', 'a', 'a', 'a', 'b', 'b',
       'b', 'a', 'a', 'a', 'a', 'a', 'b', 'a', 'a', 'b', 'b', 'a', 'b',
       'b', 'a', 'b', 'b', 'a', 'b', 'a', 'a', 'b', 'a', 'b', 'a', 'a',
       'b', 'b', 'b', 'b', 'a'], dtype='<U1')

此处的索引就是原先item中的元素,如果传入多个序列进入groupby,那么最后分组的依据就是这两个序列对应行的唯一组合:

df.groupby([condition, item])['Height'].mean()
Weight   
False   a    159.271014
        b    158.753448
True    a    171.653846
        b    173.616667
Name: Height, dtype: float64

由此可以看出,之前传入列名只是一种简便的记号,事实上等价于传入的是一个或多个列,最后分组的依据来自于数据来源组合的unique值,通过drop_duplicates就能知道具体的组类别:

df[['School', 'Gender']].drop_duplicates()
SchoolGender
0Shanghai Jiao Tong UniversityFemale
1Peking UniversityMale
2Shanghai Jiao Tong UniversityMale
3Fudan UniversityFemale
4Fudan UniversityMale
5Tsinghua UniversityFemale
9Peking UniversityFemale
16Tsinghua UniversityMale
df.groupby([df['School'], df['Gender']])['Height'].mean()
School                         Gender
Fudan University               Female    158.776923
                               Male      174.212500
Peking University              Female    158.666667
                               Male      172.030000
Shanghai Jiao Tong University  Female    159.122500
                               Male      176.760000
Tsinghua University            Female    159.753333
                               Male      171.638889
Name: Height, dtype: float64
df.groupby(['School','Gender'])['Height'].mean()
School                         Gender
Fudan University               Female    158.776923
                               Male      174.212500
Peking University              Female    158.666667
                               Male      172.030000
Shanghai Jiao Tong University  Female    159.122500
                               Male      176.760000
Tsinghua University            Female    159.753333
                               Male      171.638889
Name: Height, dtype: float64

3. Groupby对象

能够注意到,最终具体做分组操作时,所调用的方法都来自于pandas中的groupby对象,这个对象上定义了许多方法,也具有一些方便的属性。

gb = df.groupby(['School', 'Grade'])
gb
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x000001EC40F5B160>

通过ngroups属性,可以访问分为了多少组:

gb.ngroups
16

通过groups属性,可以返回从 组 名 \color{#FF0000}{组名} 映射到 组 索 引 列 表 \color{#FF0000}{组索引列表} 的字典:

res = gb.groups
res.keys() # 字典的值由于是索引,元素个数过多,此处只展示字典的键
dict_keys([('Peking University', 'Sophomore'), ('Peking University', 'Senior'), ('Fudan University', 'Freshman'), ('Fudan University', 'Junior'), ('Shanghai Jiao Tong University', 'Freshman'), ('Fudan University', 'Senior'), ('Peking University', 'Freshman'), ('Tsinghua University', 'Junior'), ('Fudan University', 'Sophomore'), ('Shanghai Jiao Tong University', 'Senior'), ('Shanghai Jiao Tong University', 'Sophomore'), ('Tsinghua University', 'Freshman'), ('Peking University', 'Junior'), ('Shanghai Jiao Tong University', 'Junior'), ('Tsinghua University', 'Senior'), ('Tsinghua University', 'Sophomore')])
【练一练】

上一小节介绍了可以通过drop_duplicates得到具体的组类别,现请用groups属性完成类似的功能。

【END】

size作为DataFrame的属性时,返回的是表长乘以表宽的大小,但在groupby对象上表示统计每个组的元素个数:

#练一练
df.groupby(['School','Gender']).groups.keys()

dict_keys([('Fudan University', 'Male'), ('Shanghai Jiao Tong University', 'Female'), ('Fudan University', 'Female'), ('Tsinghua University', 'Female'), ('Tsinghua University', 'Male'), ('Peking University', 'Female'), ('Peking University', 'Male'), ('Shanghai Jiao Tong University', 'Male')])
gb.size()
School                         Grade    
Fudan University               Freshman      9
                               Junior       12
                               Senior       11
                               Sophomore     8
Peking University              Freshman     13
                               Junior        8
                               Senior        8
                               Sophomore     5
Shanghai Jiao Tong University  Freshman     13
                               Junior       17
                               Senior       22
                               Sophomore     5
Tsinghua University            Freshman     17
                               Junior       22
                               Senior       14
                               Sophomore    16
dtype: int64

通过get_group方法可以直接获取所在组对应的行,此时必须知道组的具体名字:

gb.get_group(('Fudan University', 'Freshman'))
SchoolGradeNameGenderHeightWeightTransferTest_NumberTest_DateTime_Record
15Fudan UniversityFreshmanChangqiang YangFemale156.049.0N32020/1/10:05:25
28Fudan UniversityFreshmanGaoqiang QinFemale170.263.0N22020/1/70:05:24
63Fudan UniversityFreshmanGaofeng ZhaoFemale152.243.0N22019/10/310:04:00
70Fudan UniversityFreshmanYanquan WangFemale163.555.0N12019/11/190:04:07
73Fudan UniversityFreshmanFeng WangMale176.374.0N12019/9/260:03:31
105Fudan UniversityFreshmanQiang ShiFemale164.552.0N12019/12/110:04:23
108Fudan UniversityFreshmanYanqiang XuFemale152.438.0N12019/12/80:05:03
157Fudan UniversityFreshmanXiaoli LvFemale152.545.0N22019/9/110:04:17
186Fudan UniversityFreshmanYanjuan ZhaoFemaleNaN53.0N22019/10/90:04:21

这里列出了2个属性和2个方法,而先前的meanmedian都是groupby对象上的方法,这些函数和许多其他函数的操作具有高度相似性,将在之后的小节进行专门介绍。

4. 分组的三大操作

熟悉了一些分组的基本知识后,重新回到开头举的三个例子,可能会发现一些端倪,即这三种类型的分组返回数据的结果型态并不一样:

  • 第一个例子中,每一个组返回一个标量值,可以是平均值、中位数、组容量size
  • 第二个例子中,做了原序列的标准化处理,也就是说每组返回的是一个Series类型
  • 第三个例子中,既不是标量也不是序列,返回的整个组所在行的本身,即返回了DataFrame类型

由此,引申出分组的三大操作:聚合、变换和过滤,分别对应了三个例子的操作,下面就要分别介绍相应的aggtransformfilter函数及其操作。

二、聚合函数

1. 内置聚合函数

在介绍agg之前,首先要了解一些直接定义在groupby对象的聚合函数,因为它的速度基本都会经过内部的优化,使用功能时应当优先考虑。根据返回标量值的原则,包括如下函数:max/min/mean/median/count/all/any/idxmax/idxmin/mad/nunique/skew/quantile/sum/std/var/sem/size/prod

gb = df.groupby('Gender')['Height']

gb.idxmin()
Gender
Female    143
Male      199
Name: Height, dtype: int64
gb.quantile(0.95)
Gender
Female    166.8
Male      185.9
Name: Height, dtype: float64
【练一练】

请查阅文档,明确all/any/mad/skew/sem/prod函数的含义。

【END】

这些聚合函数当传入的数据来源包含多个列时,将按照列进行迭代计算:

gb = df.groupby('Gender')[['Height', 'Weight']]
gb.max()
HeightWeight
Gender
Female170.263.0
Male193.989.0

2. agg方法

虽然在groupby对象上定义了许多方便的函数,但仍然有以下不便之处:

  • 无法同时使用多个函数
  • 无法对特定的列使用特定的聚合函数
  • 无法使用自定义的聚合函数
  • 无法直接对结果的列名在聚合前进行自定义命名

下面说明如何通过agg函数解决这四类问题:

【a】使用多个函数

当使用多个聚合函数时,需要用列表的形式把内置聚合函数的对应的字符串传入,先前提到的所有字符串都是合法的。

gb.agg(['sum', 'idxmax', 'skew'])
HeightWeight
sumidxmaxskewsumidxmaxskew
Gender
Female21014.028-0.2192536469.028-0.268482
Male8854.91930.4375353929.02-0.332393

从结果看,此时的列索引为多级索引,第一层为数据源,第二层为使用的聚合方法,分别逐一对列使用聚合,因此结果为6列。

【b】对特定的列使用特定的聚合函数

对于方法和列的特殊对应,可以通过构造字典传入agg中实现,其中字典以列名为键,以聚合字符串或字符串列表为值。

gb.agg({'Height':['mean','max'], 'Weight':'count'})
WeightHeight
countmeanmax
Gender
Female135159.19697170.2
Male54173.62549193.9
【练一练】

请使用【b】中的传入字典的方法完成【a】中等价的聚合任务。

【END】

【c】使用自定义函数

agg中可以使用具体的自定义函数, 需 要 注 意 传 入 函 数 的 参 数 是 之 前 数 据 源 中 的 列 , 逐 列 进 行 计 算 \color{#FF0000}{需要注意传入函数的参数是之前数据源中的列,逐列进行计算} 。下面分组计算身高和体重的极差:

#练一练
gb.agg({'Height':['sum', 'idxmax', 'skew'], 'Weight':['sum', 'idxmax', 'skew']})
WeightHeight
sumidxmaxskewsumidxmaxskew
Gender
Female6469.028-0.26848221014.028-0.219253
Male3929.02-0.3323938854.91930.437535
gb.agg(lambda x: x.mean()-x.min())
HeightWeight
Gender
Female13.7969713.918519
Male17.9254921.759259

极差不应该是最大减去最小吗?

【练一练】

groupby对象中可以使用describe方法进行统计信息汇总,请同时使用多个聚合函数,完成与该方法相同的功能。

gb.describe()
HeightWeight
countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
Gender
Female132.0159.196975.053982145.4155.675159.6162.825170.2135.047.9185195.40598334.044.048.052.0063.0
Male51.0173.625497.048485155.7168.900173.4177.150193.954.072.7592597.77255751.069.073.078.7589.0
gb.agg(['count','mean','std','min',('25%',lambda x:x.quantile(0.25)),('50%','quantile'),('75%',lambda x:x.quantile(0.75)),'max'])
HeightWeight
countmeanstdmin25%50%75%maxcountmeanstdmin25%50%75%max
Gender
Female132159.196975.053982145.4155.675159.6162.825170.213547.9185195.40598334.044.048.052.0063.0
Male51173.625497.048485155.7168.900173.4177.150193.95472.7592597.77255751.069.073.078.7589.0
【END】

由于传入的是序列,因此序列上的方法和属性都是可以在函数中使用的,只需保证返回值是标量即可。下面的例子是指,如果组的指标均值,超过该指标的总体均值,返回High,否则返回Low。

def my_func(s):
    res = 'High'
    if s.mean() <= df[s.name].mean():
        res = 'Low'
    return res
gb.agg(my_func)
HeightWeight
Gender
FemaleLowLow
MaleHighHigh

【d】聚合结果重命名

如果想要对结果进行重命名,只需要将上述函数的位置改写成元组,元组的第一个元素为新的名字,第二个位置为原来的函数,包括聚合字符串和自定义函数,现举若干例子说明:

gb.agg([('range', lambda x: x.max()-x.min()), ('my_sum', 'sum')])
HeightWeight
rangemy_sumrangemy_sum
Gender
Female24.821014.029.06469.0
Male38.28854.938.03929.0
gb.agg({'Height': [('my_func', my_func), 'sum'], 'Weight': lambda x:x.max()})
WeightHeight
<lambda>my_funcsum
Gender
Female63.0Low21014.0
Male89.0High8854.9

另外需要注意,使用对一个或者多个列使用单个聚合的时候,重命名需要加方括号,否则就不知道是新的名字还是手误输错的内置函数字符串:

gb.agg([('my_sum', 'sum')])
HeightWeight
my_summy_sum
Gender
Female21014.06469.0
Male8854.93929.0
gb.agg({'Height': [('my_func', my_func), 'sum'], 'Weight': [('range', lambda x:x.min())]})
WeightHeight
rangemy_funcsum
Gender
Female34.0Low21014.0
Male51.0High8854.9

三、变换和过滤

1. 变换函数与transform方法

变换函数的返回值为同长度的序列,最常用的内置变换函数是累计函数:cumcount/cumsum/cumprod/cummax/cummin,它们的使用方式和聚合函数类似,只不过完成的是组内累计操作。此外在groupby对象上还定义了填充类和滑窗类的变换函数,这些函数的一般形式将会分别在第七章和第十章中讨论,此处略过。

gb.cummax().head()
HeightWeight
0158.946.0
1166.570.0
2188.989.0
3NaN46.0
4188.989.0
【练一练】

groupby对象中,rank方法也是一个实用的变换函数,请查阅它的功能并给出一个使用的例子。

【END】

当用自定义变换时需要使用transform方法,被调用的自定义函数, 其 传 入 值 为 数 据 源 的 序 列 \color{#FF0000}{其传入值为数据源的序列} ,与agg的传入类型是一致的,其最后的返回结果是行列索引与数据源一致的DataFrame

现对身高和体重进行分组标准化,即减去组均值后除以组的标准差:

gb.transform(lambda x: (x-x.mean())/x.std()).head()
HeightWeight
0-0.058760-0.354888
1-1.010925-0.355000
22.1670632.089498
3NaN-1.279789
40.0531330.159631
【练一练】

对于transform方法无法像agg一样,通过传入字典来对指定列使用特定的变换,如果需要在一次transform的调用中实现这种功能,请给出解决方案。

【END】

前面提到了 transform 只能返回同长度的序列,但事实上还可以返回一个标量,这会使得结果被广播到其所在的整个组,这种 :red:标量广播 的技巧在特征工程中是非常常见的。例如,构造两列新特征来分别表示样本所在性别组的身高均值和体重均值:

gb.transform('mean').head() # 传入返回标量的函数也是可以的
HeightWeight
0159.1969747.918519
1173.6254972.759259
2173.6254972.759259
3159.1969747.918519
4173.6254972.759259

2. 组索引与过滤

在上一章中介绍了索引的用法,那么索引和过滤有什么区别呢?

过滤在分组中是对于组的过滤,而索引是对于行的过滤,在第二章中的返回值,无论是布尔列表还是元素列表或者位置列表,本质上都是对于行的筛选,即如果筛选条件的则选入结果的表,否则不选入。

组过滤作为行过滤的推广,指的是如果对一个组的全体所在行进行统计的结果返回True则会被保留,False则该组会被过滤,最后把所有未被过滤的组其对应的所在行拼接起来作为DataFrame返回。

groupby对象中,定义了filter方法进行组的筛选,其中自定义函数的输入参数为数据源构成的DataFrame本身,在之前例子中定义的groupby对象中,传入的就是df[['Height', 'Weight']],因此所有表方法和属性都可以在自定义函数中相应地使用,同时只需保证自定义函数的返回为布尔值即可。

例如,在原表中通过过滤得到所有容量大于100的组:

gb.filter(lambda x: x.shape[0] > 100).head()
HeightWeight
0158.946.0
3NaN41.0
5158.051.0
6162.552.0
7161.950.0
【练一练】

从概念上说,索引功能是组过滤功能的子集,请使用filter函数完成loc[...]的功能,这里假设"..."是元素列表。

【END】

四、跨列分组

1. apply的引入

之前几节介绍了三大分组操作,但事实上还有一种常见的分组场景,无法用前面介绍的任何一种方法处理,例如现在如下定义身体质量指数BMI:
B M I = W e i g h t H e i g h t 2 {\rm BMI} = {\rm\frac{Weight}{Height^2}} BMI=Height2Weight
其中体重和身高的单位分别为千克和米,需要分组计算组BMI的均值。

首先,这显然不是过滤操作,因此filter不符合要求;其次,返回的均值是标量而不是序列,因此transform不符合要求;最后,似乎使用agg函数能够处理,但是之前强调过聚合函数是逐列处理的,而不能够 多 列 数 据 同 时 处 理 \color{#FF0000}{多列数据同时处理} 。由此,引出了apply函数来解决这一问题。

2. apply的使用

在设计上,apply的自定义函数传入参数与filter完全一致,只不过后者只允许返回布尔值。现如下解决上述计算问题:

def BMI(x):
    Height = x['Height']/100
    Weight = x['Weight']
    BMI_value = Weight/Height**2
    return BMI_value.mean()
gb.apply(BMI)
Gender
Female    18.860930
Male      24.318654
dtype: float64

除了返回标量之外,apply方法还可以返回一维Series和二维DataFrame,但它们产生的数据框维数和多级索引的层数应当如何变化?下面举三组例子就非常容易明白结果是如何生成的:

【a】标量情况:结果得到的是 Series ,索引与 agg 的结果一致

gb = df.groupby(['Gender','Test_Number'])[['Height','Weight']]
gb.apply(lambda x: 0)
Gender  Test_Number
Female  1              0
        2              0
        3              0
Male    1              0
        2              0
        3              0
dtype: int64
gb.apply(lambda x: [0, 0]) # 虽然是列表,但是作为返回值仍然看作标量
Gender  Test_Number
Female  1              [0, 0]
        2              [0, 0]
        3              [0, 0]
Male    1              [0, 0]
        2              [0, 0]
        3              [0, 0]
dtype: object

【b】Series情况:得到的是DataFrame,行索引与标量情况一致,列索引为Series的索引

gb.apply(lambda x: pd.Series([0,0],index=['a','b']))
ab
GenderTest_Number
Female100
200
300
Male100
200
300
【练一练】

请尝试在apply传入的自定义函数中,根据组的某些特征返回相同长度但索引不同的Series,会报错吗?

【END】

【c】DataFrame情况:得到的是DataFrame,行索引最内层在每个组原先agg的结果索引上,再加一层返回的DataFrame行索引,同时分组结果DataFrame的列索引和返回的DataFrame列索引一致。

gb.apply(lambda x: pd.DataFrame(np.ones((2,2)), index = ['a','b'], columns=pd.Index([('w','x'),('y','z')])))
wy
xz
GenderTest_Number
Female1a1.01.0
b1.01.0
2a1.01.0
b1.01.0
3a1.01.0
b1.01.0
Male1a1.01.0
b1.01.0
2a1.01.0
b1.01.0
3a1.01.0
b1.01.0
【练一练】

请尝试在apply传入的自定义函数中,根据组的某些特征返回相同大小但列索引不同的DataFrame,会报错吗?如果只是行索引不同,会报错吗?

【END】

最后需要强调的是,apply函数的灵活性是以牺牲一定性能为代价换得的,除非需要使用跨列处理的分组处理,否则应当使用其他专门设计的groupby对象方法,否则在性能上会存在较大的差距。同时,在使用聚合函数和变换函数时,也应当优先使用内置函数,它们经过了高度的性能优化,一般而言在速度上都会快于用自定义函数来实现。

【练一练】

groupby对象中还定义了covcorr函数,从概念上说也属于跨列的分组处理。请利用之前定义的gb对象,使用apply函数实现与gb.cov()同样的功能并比较它们的性能。

【END】

五、练习

Ex1:汽车数据集

现有一份汽车数据集,其中Brand, Disp., HP分别代表汽车品牌、发动机蓄量、发动机输出。

df = pd.read_csv('../data/car.csv')
df.head(3)
BrandPriceCountryReliabilityMileageTypeWeightDisp.HP
0Eagle Summit 48895USA4.033Small256097113
1Ford Escort 47402USA2.033Small234511490
2Ford Festiva 46319Korea4.037Small18458163
  1. 先过滤出所属Country数超过2个的汽车,即若该汽车的Country在总体数据集中出现次数不超过2则剔除,再按Country分组计算价格均值、价格变异系数、该Country的汽车数量,其中变异系数的计算方法是标准差除以均值,并在结果中把变异系数重命名为CoV
  2. 按照表中位置的前三分之一、中间三分之一和后三分之一分组,统计Price的均值。
  3. 对类型Type分组,对PriceHP分别计算最大值和最小值,结果会产生多级索引,请用下划线把多级列索引合并为单层索引。
  4. 对类型Type分组,对HP进行组内的min-max归一化。
  5. 对类型Type分组,计算Disp.HP的相关系数。
#1
df.groupby('Country').Price.agg(['mean',('CoV',lambda x:x.std()/x.mean()),'count'])

meanCoVcount
Country
France15930.000000NaN1
Germany14447.5000000.4358392
Japan13938.0526320.38742919
Japan/USA10067.5714290.2400407
Korea7857.3333330.2434353
Mexico8672.000000NaN1
Sweden18450.000000NaN1
USA12543.2692310.20334426
#2
condition = pd.Series(['middle']*df.shape[0]).mask(df.index<df.shape[0]/3,'front').mask(df.index>=2*df.shape[0]/3,'back')
condition.head(3)
df.groupby(condition).Price.mean()

back      15420.65
front      9069.95
middle    13356.40
Name: Price, dtype: float64
#3
df3 = df.groupby('Type').agg({'Price':['max'],'HP':['min']})
df3.head(3)

PriceHP
maxmin
Type
Compact1890095
Large17257150
Medium24760110
#4
df.groupby('Type').HP.transform(lambda x:(x-x.min())/(x.max()-x.min())).head()

0    1.00
1    0.54
2    0.00
3    0.58
4    0.80
Name: HP, dtype: float64
#5
df.groupby('Type')[['Disp.','HP']].corr().head(3)

Disp.HP
Type
CompactDisp.1.0000000.586087
HP0.5860871.000000
LargeDisp.1.000000-0.242765

Ex2:实现transform函数

  • groupby对象的构造方法是my_groupby(df, group_cols)
  • 支持单列分组与多列分组
  • 支持带有标量广播的my_groupby(df)[col].transform(my_func)功能
  • pandastransform不能跨列计算,请支持此功能,即仍返回Seriescol参数为多列
  • 无需考虑性能与异常处理,只需实现上述功能,在给出测试样例的同时与pandas中的transform对比结果是否一致

体会就是:不会怎么运用。这些是不是要稍微记忆啊。不然不会用啊。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIDD Learning

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值