LeetCode 198. 打家劫舍
https://leetcode.cn/problems/house-robber
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
输入:[1,2,3,1]
输出:4
解释:偷窃 1
号房屋 (金额 = 1
) ,然后偷窃 3
号房屋 (金额 = 3
)。
偷窃到的最高金额 = 1 + 3 = 4
。
输入:[2,7,9,3,1]
输出:12
解释:偷窃 1
号房屋 (金额 = 2
), 偷窃 3
号房屋 (金额 = 9
),接着偷窃 5
号房屋 (金额 = 1
)。
偷窃到的最高金额 = 2 + 9 + 1 = 12
。
补充:从第 1
号房屋开始打劫或者第 2
号房屋开始打劫皆可。
1. 设计状态
dp[i]
表示 0~i
家打劫后能获得的最高钱数。
2. 写出状态转移方程
若打劫 i-1
号房屋那么就不能再打劫 i
号房屋了,只能隔一个房屋打劫,所以状态转移方程为:
dp[i] = max(dp[i-1], dp[i-2] + nums[i])
3. 设定初始状态
dp[0] = nums[0]
dp[1] = max(nums[0], nums[1])
4. 执行状态转移
5. 返回最终的解
dp[numsSize - 1]
Solution
int max(int a, int b) {
return a > b ? a : b;
}
int rob(int* nums, int numsSize){
if (numsSize == 1) {
return nums[0];
}
int dp[101];
// 初始状态
dp[0] = nums[0];
dp[1] = max(nums[1], nums[0]);
for(int i = 2; i < numsSize; ++i) {
// 状态转移
dp[i] = max(dp[i-1], dp[i-2] + nums[i]);
}
// 返回最终的解
return dp[numsSize-1];
}
(扩展)LeetCode 740. 删除并获得点数
https://leetcode.cn/problems/delete-and-earn/
给你一个整数数组 nums
,你可以对它进行一些操作。
每次操作中,选择任意一个 nums[i]
,删除它并获得 nums[i]
的点数。之后,你必须删除 所有 等于 nums[i] - 1
和 nums[i] + 1
的元素。
开始你拥有 0
个点数。返回你能通过这些操作获得的最大点数。
输入:nums = [2,2,3,3,3,4]
输出:9
int max(int a, int b) {
return a > b ? a : b;
}
// 打家劫舍代码
int rob(int* nums, int numsSize){
if (numsSize == 1) {
return nums[0];
}
int dp[numsSize];
dp[0] = nums[0];
dp[1] = max(nums[1], nums[0]);
for(int i = 2; i < numsSize; ++i) {
dp[i] = max(dp[i-1], dp[i-2] + nums[i]);
}
return dp[numsSize-1];
}
int deleteAndEarn(int* nums, int numsSize){
// nums = [2,2,3,3,3,4]
// 将 nums 数组进行映射 sum = [0,0,2,3,1], sum[i] 表示 nums 中 i 的数量
// 用 val 数组记录相同元素之和 val = [0,0,4,9,4] ==> 转化为了打家劫舍问题
int sum[10001];
int val[10001];
memset(sum, 0, sizeof(sum));
for (int i = 0; i < numsSize; ++i) {
sum[nums[i]]++;
}
for (int i = 0; i < 10001; ++i) {
val[i] = i * sum[i];
}
// 直接调用打家劫舍的代码
return rob(val, 10001);
}