Day8 Convert Sorted Array to Binary Search Tree

LeetCode108:Convert Sorted Array to Binary Search Tree


Given an array where elements are sorted in ascending order, convert it to a height balanced BST.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees ofevery node never differ by more than 1.


Example:

Given the sorted array: [-10,-3,0,5,9],

One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:

      0
     / \
   -3   9
   /   /
 -10  5


意思是把一个有序数组拿来建成一棵平衡的二叉检索树。

要使二叉树平衡的话,每个结点的左子树与右子树最大的高度差为1;

其实我们只要保证每个结点的左子树中的结点和右子树的结点数量基本一致就行了。由于数组是有序的,我们很容易能找到数组的中间位置,而中间位置的数全部比其左边小,故左边的数应全在其左子树中,同理,右边的数应全在其右子树中。左半边的树为了区分其相对顺序,重复上述操作,右边的也是。递归的基础条件是刚好划分到只有一个数的时候,就不用考虑其左右子树了。






构造一个完整的二叉搜索树(Complete Binary Search Tree, CBST)涉及两个关键方面:一是确保该树是一个完全二叉树,二是满足二叉搜索树的性质。 ### 完全二叉树的特点 完全二叉树是指除最后一层外,其余每一层都被完全填充,并且所有节点都必须尽可能靠左排列。这一特征使得我们可以有效地通过数组来表示完全二叉树,其中对于任意索引i处的节点: - 其左孩子位于位置2*i+1; - 右孩子则处于位置2*i+2; ### 构建步骤概述 给定一组数值元素如列表`[7, 4, 9, 1, 5, 8, 10]`, 我们希望将其组织成一颗CBST: #### 步骤一: 对输入数据排序 首先应对原始序列进行升序排序得到 `[1, 4, 5, 7, 8, 9, 10]` #### 步骤二: 利用分治法递归生成CBST 采用类似堆排序的方式,找到中间点作为根节点(root),左侧部分构成左子树,右侧形成右子树。 例如选取上述排好序后的中间值 `7` 设为root,则左边 `[1, 4, 5]` 成为其左子树,右边 `[8, 9, 10]` 继续按同样规则处理直至每个叶节点均创建完毕为止。 ```python class TreeNode: def __init__(self, val=0): self.val = val self.left = None self.right = None def sortedArrayToBST(nums): if not nums: return None mid = len(nums) // 2 #取整数向下找中心位置 root = TreeNode(nums[mid]) root.left = sortedArrayToBST(nums[:mid]) #递归建立左半边树 root.right = sortedArrayToBST(nums[mid+1:]) #递归建立右半边树 return root ``` 这个Python示例程序展示了如何把已排序好的数组转换成为一棵平衡CBST的基本逻辑框架。 --- 如果您还有更多疑问或需要深入探讨某些细节,请随时提问!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值