1.用最小二乘法拟合曲线
"用目标函数y=sin2πx, 加上一个正态分布的噪音干扰,用多项式去拟合"
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import leastsq#最小二乘
def real_f(x):#目标函数
return np.sin(2*np.pi*x)
def fit_f(p, x):#多项式
f = np.poly1d(p)#多项式函数
return f(x)
def residuals_f(p,x,y):#残差, y预测值
return fit_f(p,x) - y
x = np.linspace(0, 1, 10)#10个噪声点
x_points = np.linspace(0, 1, 1000)#1000个真实目标点
y_ = real_f(x)
y = [np.random.normal(0,0.1) + y1 for y1 in y_]#加均值0、方差0.1的正态分布噪音
# print(y)
#拟合函数
def f(M = 0):#M多项式次数
p_init = np.random.rand(M+1)#随机初始化多项式参数,次数为M+1个
p_lsq = leastsq(residuals_f, p_init, args=(x, y))#三个参数:误差函数、函数参数列表、数据点
print('Fitting Parameters', p_lsq[0])
plt.plot(x_points, real_f(x_points), label = 'real')#真实曲线
plt.plot(x_points, fit_f(p_lsq[0], x_points), label = 'fitted')#拟合曲线
p