统计学习(第一章)李航 最小二乘拟合正弦函数,正则化

1.用最小二乘法拟合曲线 

"用目标函数y=sin2πx, 加上一个正态分布的噪音干扰,用多项式去拟合"
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import leastsq#最小二乘

def real_f(x):#目标函数
    return np.sin(2*np.pi*x)
def fit_f(p, x):#多项式
    f = np.poly1d(p)#多项式函数
    return f(x)
def residuals_f(p,x,y):#残差, y预测值
    return fit_f(p,x) - y

x = np.linspace(0, 1, 10)#10个噪声点
x_points = np.linspace(0, 1, 1000)#1000个真实目标点
y_ = real_f(x)
y = [np.random.normal(0,0.1) + y1 for y1 in y_]#加均值0、方差0.1的正态分布噪音
# print(y)

#拟合函数
def f(M = 0):#M多项式次数
    p_init = np.random.rand(M+1)#随机初始化多项式参数,次数为M+1个
    p_lsq = leastsq(residuals_f, p_init, args=(x, y))#三个参数:误差函数、函数参数列表、数据点
    print('Fitting Parameters', p_lsq[0])

    plt.plot(x_points, real_f(x_points), label = 'real')#真实曲线
    plt.plot(x_points, fit_f(p_lsq[0], x_points), label = 'fitted')#拟合曲线
    p
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值