一道求最值的题目

在这里插入图片描述

计算 问实数 x , y , z x,y,z x,y,z在满足 x + y + z = 3 , x 2 + y 2 + z 2 = 9 x+y+z=3,x^2+y^2+z^2=9 x+y+z=3,x2+y2+z2=9的情况下,求 y − x y-x yx的最大值

方法1

使用拉格朗日乘数法
L ( x , y , z , λ , μ ) = y − x + λ ( x + y + z − 3 ) + μ ( x 2 + y 2 + z 2 − 9 ) L(x,y,z,\lambda,\mu )=y-x+\lambda(x+y+z-3)+\mu(x^2+y^2+z^2-9) L(x,y,z,λ,μ)=yx+λ(x+y+z3)+μ(x2+y2+z29)

{ L x ′ = − 1 + λ + 2 x μ = 0...... ( 1 ) L y ′ = 1 + λ + 2 y μ = 0...... ( 2 ) L z ′ = λ + 2 z μ = 0...... ( 3 ) L λ ′ = x + y + z = 3...... ( 4 ) L μ ′ = x 2 + y 2 + z 2 = 9...... ( 5 ) \left\{\begin{array}{l} L_{x}^{\prime}=-1+\lambda+2 x \mu=0......(1)\\ L_{y}^{\prime}=1+\lambda+2 y \mu=0......(2)\\ L_{z}^{\prime}=\lambda+2 z \mu=0......(3)\\ L_{\lambda}^{\prime}=x+y+z=3......(4)\\ L_{\mu}^{\prime}=x^{2}+y^{2}+z^{2}=9......(5) \end{array}\right. Lx=1+λ+2xμ=0......(1)Ly=1+λ+2yμ=0......(2)Lz=λ+2zμ=0......(3)Lλ=x+y+z=3......(4)Lμ=x2+y2+z2=9......(5)

( 1 ) + ( 2 ) − 2 ( 3 ) (1)+(2)-2(3) (1)+(2)2(3)
2 μ ( x + y − 2 z ) = 0 2\mu(x+y-2z)=0 2μ(x+y2z)=0
代入 ( 4 ) \text{代入}(4) 代入(4)
2 μ ( 3 − 3 z ) = 0 2\mu(3-3z)=0 2μ(33z)=0
μ = 0 \mu=0 μ=0时,无解
⇒ z = 1 \Rightarrow z=1 z=1
⇒ x + y = 2 \Rightarrow x+y=2 x+y=2
x 2 + y 2 = 8 x^2+y^2=8 x2+y2=8
⇒ x y = ( x + y ) 2 − ( x 2 + y 2 ) 2 = − 2 \Rightarrow xy=\frac{(x+y)^2-(x^2+y^2)}{2}=-2 xy=2(x+y)2(x2+y2)=2
x , y x,y x,y r 2 − 2 r − 2 = 0 r^2-2r-2=0 r22r2=0的两个根
r = 1 ± 3 r=1\pm \sqrt{3} r=1±3
⇒ { x = 1 + 3 y = 1 − 3 或 { x = 1 − 3 y = 1 + 3 \Rightarrow \begin{cases} x&=1+\sqrt{3}\\ y&=1-\sqrt{3} \end{cases}\text{或}\begin{cases} x&=1-\sqrt{3}\\ y&=1+\sqrt{3} \end{cases} {xy=1+3 =13 {xy=13 =1+3
⇒ max ⁡ y − x = 2 3 \Rightarrow \max y-x=2\sqrt{3} maxyx=23

方法2

( x + y + z ) 2 − ( x 2 + y 2 + z 2 ) = 2 x y + 2 x z + 2 y z = 0 (x+y+z)^2-(x^2+y^2+z^2)=2xy+2xz+2yz=0 (x+y+z)2(x2+y2+z2)=2xy+2xz+2yz=0 ( y − x ) 2 = y 2 + x 2 − 2 x y = 9 − z 2 + 2 z ( x + y ) = 9 − z 2 + 2 z ( 3 − z ) = − 3 ( z − 1 ) 2 + 12 \begin{aligned} (y-x)^2&=y^2+x^2-2xy\\ &=9-z^2+2z(x+y)\\ &=9-z^2+2z(3-z)\\ &=-3(z-1)^2+12\end{aligned} (yx)2=y2+x22xy=9z2+2z(x+y)=9z2+2z(3z)=3(z1)2+12
⇒ max ⁡ ( y − x ) 2 = 12 ⇒ max ⁡ y − x = 2 3 \Rightarrow \max (y-x)^2=12\Rightarrow \max y-x=2\sqrt{3} max(yx)2=12maxyx=23

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值