计算 问实数 x , y , z x,y,z x,y,z在满足 x + y + z = 3 , x 2 + y 2 + z 2 = 9 x+y+z=3,x^2+y^2+z^2=9 x+y+z=3,x2+y2+z2=9的情况下,求 y − x y-x y−x的最大值
方法1
使用拉格朗日乘数法
L
(
x
,
y
,
z
,
λ
,
μ
)
=
y
−
x
+
λ
(
x
+
y
+
z
−
3
)
+
μ
(
x
2
+
y
2
+
z
2
−
9
)
L(x,y,z,\lambda,\mu )=y-x+\lambda(x+y+z-3)+\mu(x^2+y^2+z^2-9)
L(x,y,z,λ,μ)=y−x+λ(x+y+z−3)+μ(x2+y2+z2−9)
{ L x ′ = − 1 + λ + 2 x μ = 0...... ( 1 ) L y ′ = 1 + λ + 2 y μ = 0...... ( 2 ) L z ′ = λ + 2 z μ = 0...... ( 3 ) L λ ′ = x + y + z = 3...... ( 4 ) L μ ′ = x 2 + y 2 + z 2 = 9...... ( 5 ) \left\{\begin{array}{l} L_{x}^{\prime}=-1+\lambda+2 x \mu=0......(1)\\ L_{y}^{\prime}=1+\lambda+2 y \mu=0......(2)\\ L_{z}^{\prime}=\lambda+2 z \mu=0......(3)\\ L_{\lambda}^{\prime}=x+y+z=3......(4)\\ L_{\mu}^{\prime}=x^{2}+y^{2}+z^{2}=9......(5) \end{array}\right. ⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧Lx′=−1+λ+2xμ=0......(1)Ly′=1+λ+2yμ=0......(2)Lz′=λ+2zμ=0......(3)Lλ′=x+y+z=3......(4)Lμ′=x2+y2+z2=9......(5)
(
1
)
+
(
2
)
−
2
(
3
)
(1)+(2)-2(3)
(1)+(2)−2(3)
2
μ
(
x
+
y
−
2
z
)
=
0
2\mu(x+y-2z)=0
2μ(x+y−2z)=0
代入
(
4
)
\text{代入}(4)
代入(4)
2
μ
(
3
−
3
z
)
=
0
2\mu(3-3z)=0
2μ(3−3z)=0
当
μ
=
0
\mu=0
μ=0时,无解
⇒
z
=
1
\Rightarrow z=1
⇒z=1
⇒
x
+
y
=
2
\Rightarrow x+y=2
⇒x+y=2
x
2
+
y
2
=
8
x^2+y^2=8
x2+y2=8
⇒
x
y
=
(
x
+
y
)
2
−
(
x
2
+
y
2
)
2
=
−
2
\Rightarrow xy=\frac{(x+y)^2-(x^2+y^2)}{2}=-2
⇒xy=2(x+y)2−(x2+y2)=−2
x
,
y
x,y
x,y是
r
2
−
2
r
−
2
=
0
r^2-2r-2=0
r2−2r−2=0的两个根
r
=
1
±
3
r=1\pm \sqrt{3}
r=1±3
⇒
{
x
=
1
+
3
y
=
1
−
3
或
{
x
=
1
−
3
y
=
1
+
3
\Rightarrow \begin{cases} x&=1+\sqrt{3}\\ y&=1-\sqrt{3} \end{cases}\text{或}\begin{cases} x&=1-\sqrt{3}\\ y&=1+\sqrt{3} \end{cases}
⇒{xy=1+3=1−3或{xy=1−3=1+3
⇒
max
y
−
x
=
2
3
\Rightarrow \max y-x=2\sqrt{3}
⇒maxy−x=23
方法2
(
x
+
y
+
z
)
2
−
(
x
2
+
y
2
+
z
2
)
=
2
x
y
+
2
x
z
+
2
y
z
=
0
(x+y+z)^2-(x^2+y^2+z^2)=2xy+2xz+2yz=0
(x+y+z)2−(x2+y2+z2)=2xy+2xz+2yz=0
(
y
−
x
)
2
=
y
2
+
x
2
−
2
x
y
=
9
−
z
2
+
2
z
(
x
+
y
)
=
9
−
z
2
+
2
z
(
3
−
z
)
=
−
3
(
z
−
1
)
2
+
12
\begin{aligned} (y-x)^2&=y^2+x^2-2xy\\ &=9-z^2+2z(x+y)\\ &=9-z^2+2z(3-z)\\ &=-3(z-1)^2+12\end{aligned}
(y−x)2=y2+x2−2xy=9−z2+2z(x+y)=9−z2+2z(3−z)=−3(z−1)2+12
⇒
max
(
y
−
x
)
2
=
12
⇒
max
y
−
x
=
2
3
\Rightarrow \max (y-x)^2=12\Rightarrow \max y-x=2\sqrt{3}
⇒max(y−x)2=12⇒maxy−x=23