原始Young不等式

原始Young不等式

设函数 f ( x ) f(x) f(x)是严格单增的连续函数 ( x ≥ 0 ) (x\ge0) (x0)
f ( 0 ) = 0 f(0)=0 f(0)=0
对于 ∀ a ≥ 0 , b ≥ 0 \forall a\ge 0,b\ge 0 a0,b0
a b ≤ ∫ 0 a f ( x ) d x + ∫ 0 b f − 1 ( x ) d x ab\le \int_{0}^{a}f(x)\mathrm{d} x+\int_{0}^{b}f^{-1}(x)\mathrm{d}x ab0af(x)dx+0bf1(x)dx,当且仅当 f ( a ) = b f(a)=b f(a)=b取等
证明:

先证明当 b = f ( a ) b=f(a) b=f(a)时, ∫ 0 a f ( x ) d x + ∫ 0 b f − 1 ( y ) d y = a f ( a ) \int_{0}^{a}f(x)\mathrm{d} x+\int_{0}^{b}f^{-1}(y)\mathrm{d}y=af(a) 0af(x)dx+0bf1(y)dy=af(a)
因为 f ( x ) f(x) f(x) [ 0 , a ] [0,a] [0,a]上是严格单增的函数
所以 f − 1 ( x ) f^{-1}(x) f1(x) [ 0 , f ( a ) ] [0,f(a)] [0,f(a)]上是严格单增的函数
[ 0 , a ] n [0,a]n [0,a]n等分
0 = x 0 ≤ x 1 < x 2 < ⋯ < x n = a 0=x_0\le x_1 <x_2<\cdots<x_n=a 0=x0x1<x2<<xn=a
y = f ( x i ) y=f(x_i) y=f(xi),则构成 [ 0 , f ( a ) ] [0,f(a)] [0,f(a)]的一个划分
0 = y 0 ≤ y 1 < y 2 < ⋯ < y n = f ( a ) 0=y_0\le y_1<y_2<\cdots<y_n=f(a) 0=y0y1<y2<<yn=f(a)
因为 f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b]
所以 f ( x ) f(x) f(x) [ 0 , a ] [0,a] [0,a]上一致连续
n → ∞ n\to \infty n
max ⁡ 1 ≤ i ≤ n Δ y i = max ⁡ 1 ≤ i ≤ n ( y i − y i − 1 ) = max ⁡ 1 ≤ i ≤ n ( f ( x i ) − f ( x i − 1 ) → 0 \max\limits_{1\le i \le n}\Delta y_i=\max\limits_{1\le i \le n}(y_i-y_{i-1})=\max\limits_{1\le i \le n}(f(x_i)-f(x_{i-1})\to 0 1inmaxΔyi=1inmax(yiyi1)=1inmax(f(xi)f(xi1)0
∫ 0 a f ( x ) d x + ∫ 0 b f − 1 ( y ) d y = lim ⁡ n → ∞ ( ∑ i = 1 n f ( x i ) Δ x i + ∑ i = 1 n f ( y i − 1 ) Δ y i = lim ⁡ n → ∞ ∑ i = 1 n ( f ( x i ) ( x i − x i − 1 ) + f ( y i − 1 ) ( f ( x i ) − f ( x i − 1 ) ) = lim ⁡ n → ∞ ∑ i = 1 n ( f ( x i ) x i − x i − 1 f ( x i − 1 ) ) = lim ⁡ n → ∞ ( f ( x n ) x n − x 0 f ( x 0 ) ) = a f ( a ) − 0 f ( 0 ) = a f ( a ) \begin{aligned} &\quad \int_{0}^{a}f(x)\mathrm{d} x+\int_{0}^{b}f^{-1}(y)\mathrm{d}y\\ &=\lim\limits_{n\to\infty}(\sum_{i=1}^{n}f(x_i)\Delta x_i+\sum_{i=1}^{n}f(y_{i-1})\Delta y_i\\ &=\lim\limits_{n\to\infty}\sum_{i=1}^{n}\left(f(x_i)(x_i-x_{i-1})+f(y_{i-1})(f(x_i)-f(x_{i-1}) \right)\\ &=\lim\limits_{n\to\infty}\sum_{i=1}^{n}(f(x_i)x_i-x_{i-1}f(x_{i-1}))\\ &=\lim\limits_{n\to\infty}(f(x_n)x_n-x_0f(x_0))\\ &=af(a)-0f(0)\\ &=af(a)\\ \end{aligned} 0af(x)dx+0bf1(y)dy=nlim(i=1nf(xi)Δxi+i=1nf(yi1)Δyi=nlimi=1n(f(xi)(xixi1)+f(yi1)(f(xi)f(xi1))=nlimi=1n(f(xi)xixi1f(xi1))=nlim(f(xn)xnx0f(x0))=af(a)0f(0)=af(a)
0 < b < f ( a ) 0<b<f(a) 0<b<f(a)时,由 f ( x ) f(x) f(x)的连续性可知
至少存在一点 x 0 ∈ ( 0 , a ) x_0\in(0,a) x0(0,a),使得 f ( x 0 ) = b f(x_0)=b f(x0)=b
∫ 0 a f ( x ) d x + ∫ 0 b f − 1 ( y ) d y = ∫ 0 x 0 f ( x ) d x + ∫ x 0 a f ( x ) d x + ∫ 0 f ( x 0 ) f − 1 ( y ) d y = x 0 f ( x 0 ) + ( a − x 0 ) f ( ξ ) ( ξ ∈ ( x 0 , a ) ) ≥ x 0 f ( x 0 ) + ( a − x 0 ) f ( x 0 ) = a f ( x 0 ) = a b \begin{aligned} &\quad \int_{0}^{a}f(x)\mathrm{d} x+\int_{0}^{b}f^{-1}(y)\mathrm{d}y\\ &=\int_{0}^{x_0}f(x)\mathrm{d}x+\int_{x_0}^{a}f(x)\mathrm{d}x+\int_{0}^{f(x_0)}f^{-1}(y)\mathrm{d}y\\ &=x_0f(x_0)+(a-x_0)f(\xi)(\xi\in (x_0,a))\\ &\ge x_0f(x_0)+(a-x_0)f(x_0)\\ &=af(x_0)\\ &=ab \end{aligned} 0af(x)dx+0bf1(y)dy=0x0f(x)dx+x0af(x)dx+0f(x0)f1(y)dy=x0f(x0)+(ax0)f(ξ)(ξ(x0,a))x0f(x0)+(ax0)f(x0)=af(x0)=ab
b > f ( a ) b>f(a) b>f(a)
∫ 0 a f ( x ) d x + ∫ 0 b f − 1 ( y ) d y = ∫ 0 a f ( x ) d x + ∫ 0 f ( a ) f − 1 ( y ) d y + ∫ f ( a ) b f − 1 ( y ) d y = a f ( a ) + ( b − f ( a ) ) f − 1 ( ξ ) ( ξ ∈ ( f ( a ) , b ) ) ≥ a f ( a ) + ( b − f ( a ) ) f − 1 ( f ( a ) ) = a f ( a ) + ( b − f ( a ) ) a = a b \begin{aligned} &\quad \int_{0}^{a}f(x)\mathrm{d} x+\int_{0}^{b}f^{-1}(y)\mathrm{d}y\\ &=\quad \int_{0}^{a}f(x)\mathrm{d} x+\int_{0}^{f(a)}f^{-1}(y)\mathrm{d}y+\int_{f(a)}^{b}f^{-1}(y)\mathrm{d}y\\ &=af(a)+(b-f(a))f^{-1}(\xi)(\xi\in (f(a),b))\\ &\ge af(a)+(b-f(a))f^{-1}(f(a))\\ &=af(a)+(b-f(a))a\\ &=ab \end{aligned} 0af(x)dx+0bf1(y)dy=0af(x)dx+0f(a)f1(y)dy+f(a)bf1(y)dy=af(a)+(bf(a))f1(ξ)(ξ(f(a),b))af(a)+(bf(a))f1(f(a))=af(a)+(bf(a))a=ab

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值