Introduction to nonlinear optimization第二章习题

2.1. Find the global minimum and maximum points of the function f ( x , y ) = x 2 + y 2 + 2 x − 3 y f(x,y)=x^2+y^2+2x-3y f(x,y)=x2+y2+2x3y over the unit ball S = B [ 0 , 1 ] = { ( x , y ) : x 2 + y 2 ≤ 1 } S=B[0,1]=\left\{(x,y):x^2+y^2\le 1\right\} S=B[0,1]={(x,y):x2+y21}.

解:

f ( x , y ) = ( x + 1 ) 2 + ( y − 3 2 ) 2 − 13 4 f(x,y)=(x+1)^2+(y-\frac{3}{2})^2-\frac{13}{4} f(x,y)=(x+1)2+(y23)2413
显然最小值点和最大值点在 y = − 3 2 x y=-\frac{3}{2}x y=23x
{ y = − 3 2 x x 2 + y 2 = 1 ⇒ { x = 2 13 y = − 3 13 或 { x = − 2 13 y = 3 13 \begin{cases} y=-\frac{3}{2}x\\ x^2+y^2=1 \end{cases}\Rightarrow \begin{cases} x=\frac{2}{\sqrt{13}}\\ y=-\frac{3}{\sqrt{13}} \end{cases}\text{或} \begin{cases} x=-\frac{2}{\sqrt{13}}\\ y=\frac{3}{\sqrt{13}} \end{cases} {y=23xx2+y2=1{x=13 2y=13 3{x=13 2y=13 3
所以最小值点 ( − 2 13 , 3 13 ) (-\frac{2}{\sqrt{13}},\frac{3}{\sqrt{13}}) (13 2,13 3),最大值点 ( 2 13 , − 3 13 ) (\frac{2}{\sqrt{13}},-\frac{3}{\sqrt{13}}) (13 2,13 3)

2.2. Let a ∈ R n \mathbf{a}\in \mathbb{R}^n aRn be a nonzero vector. Show that the maximum of a T x \mathbf{a}^T\mathbf{x} aTx over B [ 0 , 1 ] = { x ∈ R n : ∥ x ∥ ≤ 1 } B[0,1]=\left\{\mathbf{x}\in\mathbb{R}^n:\|\mathbf{x}\|\le 1\right\} B[0,1]={xRn:x1} is attained at x ∗ = a ∥ a ∥ \mathbf{x}^*=\frac{\mathbf{a}}{\|\mathbf{a}\|} x=aa and that the maximal value is ∥ a ∥ \|\mathbf{a}\| a.

解:
由柯西不等式
a T x ≤ ∥ a ∥ ∥ x ∥ ≤ ∥ a ∥ \mathbf{a}^T\mathbf{x}\le \|\mathbf{a}\|\|\mathbf{x}\|\le \|\mathbf{a}\| aTxaxa
当且仅当 x \mathbf{x} x a \mathbf{a} a成比例时取等
并且 ∥ x ∥ = 1 \|\mathbf{x}\|=1 x=1,所以 x ∗ = a ∥ a ∥ \mathbf{x}^*=\frac{\mathbf{a}}{\|\mathbf{a}\|} x=aa

2.3. Find the global minimum and maximum points of the function f ( x , y ) = 2 x − 3 y f(x,y)=2x-3y f(x,y)=2x3y over the set S = { ( x , y ) : 2 x 2 + 5 y 2 ≤ 1 } S=\left\{(x,y):2x^2+5y^2\le 1\right\} S={(x,y):2x2+5y21}.

解:
z = 2 x − 3 y z=2x-3y z=2x3y
于是 y = 2 3 x − z 3 y=\frac{2}{3}x-\frac{z}{3} y=32x3z

显然最小值点和最大值点在 y = − 3 2 x y=-\frac{3}{2}x y=23x
{ y = − 3 2 x 2 x 2 + 5 y 2 = 1 ⇒ { x = 2 53 y = − 3 53 或 { x = − 2 53 y = 3 53 \begin{cases} y=-\frac{3}{2}x\\ 2x^2+5y^2=1 \end{cases}\Rightarrow \begin{cases} x=\frac{2}{\sqrt{53}}\\ y=-\frac{3}{\sqrt{53}} \end{cases}\text{或} \begin{cases} x=-\frac{2}{\sqrt{53}}\\ y=\frac{3}{\sqrt{53}} \end{cases} {y=23x2x2+5y2=1{x=53 2y=53 3{x=53 2y=53 3

所以最小值点 ( − 2 53 , 3 53 ) (-\frac{2}{\sqrt{53}},\frac{3}{\sqrt{53}}) (53 2,53 3),最大值点 ( 2 53 , − 3 53 ) (\frac{2}{\sqrt{53}},-\frac{3}{\sqrt{53}}) (53 2,53 3)

2.4. Show that if A , B \mathbf{A},\mathbf{B} A,B are n × n n\times n n×n positive semidefinite matrices, then their sum A + B \mathbf{A}+\mathbf{B} A+B is also positive semidefinite.


∀ x ≠ 0 , x T A x ≥ 0 , x T B x ≥ 0 \forall \mathbf{x}\neq 0, \mathbf{x}^T\mathbf{A}\mathbf{x}\ge 0,\mathbf{x}^T\mathbf{B}\mathbf{x}\ge 0 x=0,xTAx0,xTBx0
所以
∀ x ≠ 0 , x T ( A + B ) x ≥ 0 ⇒ ( A + B ) ⪰ 0 \forall \mathbf{x}\neq 0, \mathbf{x}^T\left(\mathbf{A}+\mathbf{B}\right)\mathbf{x}\ge 0\Rightarrow \left(\mathbf{A}+\mathbf{B}\right)\succeq 0 x=0,xT(A+B)x0(A+B)0

2.5. Let A ∈ R n × n \mathbf{A}\in \mathbb{R}^{n\times n} ARn×n and B ∈ R n × n \mathbf{B}\in \mathbb{R}^{n\times n} BRn×n be two symmetric matrices. Prove that the following two claims are equivalent:
(i) A \mathbf{A} A and B \mathbf{B} B are positive semidefinite.
(ii) ( A 0 n × m 0 m × n B ) \begin{pmatrix} \mathbf{A}& 0_{n\times m}\\ 0_{m\times n} & \mathbf{B}\\ \end{pmatrix} (A0m×n0n×mB) is positive semidefinite.

解:
( i ) ⇒ ( i i ) (i)\Rightarrow (ii) (i)(ii)
因为
∀ x ≠ 0 , x T A x ≥ 0 ∀ y ≠ 0 , y T B y ≥ 0 \forall \mathbf{x}\neq 0, \mathbf{x}^T\mathbf{A}\mathbf{x}\ge 0\\ \forall \mathbf{y}\neq 0, \mathbf{y}^T\mathbf{B}\mathbf{y}\ge 0\\ x=0,xTAx0y=0,yTBy0
于是
∀ z = ( x y ) ≠ 0 , z T ( A 0 n × m 0 m × n B ) z = x T A x + y T B y ≥ 0 \forall \mathbf{z}=\begin{pmatrix} \mathbf{x}\\ \mathbf{y} \end{pmatrix}\neq 0, \mathbf{z}^T\begin{pmatrix} \mathbf{A}& 0_{n\times m}\\ 0_{m\times n} & \mathbf{B}\\ \end{pmatrix}\mathbf{z}=\mathbf{x}^T\mathbf{A}\mathbf{x}+\mathbf{y}^T\mathbf{B}\mathbf{y}\ge 0 z=(xy)=0,zT(A0m×n0n×mB)z=xTAx+yTBy0
所以
( A 0 n × m 0 m × n B ) ⪰ 0 \begin{pmatrix} \mathbf{A}& 0_{n\times m}\\ 0_{m\times n} & \mathbf{B}\\ \end{pmatrix}\succeq 0 (A0m×n0n×mB)0

( i i ) ⇒ ( i ) (ii)\Rightarrow (i) (ii)(i)
∀ z = ( x 0 ) ≠ 0 , z T ( A 0 n × m 0 m × n B ) z = x T A x ≥ 0 ⇒ A ⪰ 0 \forall \mathbf{z}=\begin{pmatrix} \mathbf{x}\\ 0 \end{pmatrix}\neq 0, \mathbf{z}^T\begin{pmatrix} \mathbf{A}& 0_{n\times m}\\ 0_{m\times n} & \mathbf{B}\\ \end{pmatrix}\mathbf{z}=\mathbf{x}^T\mathbf{A}\mathbf{x}\ge 0\Rightarrow \mathbf{A}\succeq 0 z=(x0)=0,zT(A0m×n0n×mB)z=xTAx0A0

∀ z = ( 0 y ) ≠ 0 , z T ( A 0 n × m 0 m × n B ) z = y T B y ≥ 0 ⇒ B ⪰ 0 \forall \mathbf{z}=\begin{pmatrix} 0\\ \mathbf{y} \end{pmatrix}\neq 0, \mathbf{z}^T\begin{pmatrix} \mathbf{A}& 0_{n\times m}\\ 0_{m\times n} & \mathbf{B}\\ \end{pmatrix}\mathbf{z}=\mathbf{y}^T\mathbf{B}\mathbf{y}\ge 0\Rightarrow \mathbf{B}\succeq 0 z=(0y)=0,zT(A0m×n0n×mB)z=yTBy0B0

2.6. Let B ∈ R n × k \mathbf{B}\in\mathbb{R}^{n\times k} BRn×k and let A = B B T \mathbf{A}=\mathbf{B}\mathbf{B}^T A=BBT.
(i)Prove A \mathbf{A} A is positive semidefinite.
(ii)Prove that A \mathbf{A} A is positive definite if and only if B \mathbf{B} B has a full row rank.

解:
(i)
∀ x ≠ 0 , x T A x = x T B B T x = ∥ B T x ∥ 2 ≥ 0 ⇒ A ⪰ 0 \forall \mathbf{x}\neq 0,\mathbf{x}^T\mathbf{Ax}=\mathbf{x}^T\mathbf{B}\mathbf{B}^T\mathbf{x}=\|\mathbf{B}^T\mathbf{x}\|^2\ge 0\Rightarrow \mathbf{A}\succeq 0 x=0,xTAx=xTBBTx=BTx20A0

(ii)
利用 r ( A ) = r ( A T ) = r ( A T A ) r(\mathbf{A})=r(\mathbf{A}^T)=r(\mathbf{A}^T\mathbf{A}) r(A)=r(AT)=r(ATA)
显然成立

2.7.
(i) Let A \mathbf{A} A be an n × n n\times n n×n symmetric matrix. Show that A \mathbf{A} A is positive semidefinite if and only if there exists a matrix B ∈ R n × n \mathbf{B}\in\mathbb{R}^{n\times n} BRn×n such that A = B B T \mathbf{A}=\mathbf{B}\mathbf{B}^T A=BBT.
(ii) Let x ∈ R n \mathbf{x}\in \mathbb{R}^n xRn and Let A \mathbf{A} A be defined as
A i j = x i x j , i , j = 1 , 2 , ⋯   , n . \mathbf{A}_{ij}=\mathbf{x}_i\mathbf{x}_j,\quad i,j=1,2,\cdots,n. Aij=xixj,i,j=1,2,,n.
Show that A \mathbf{A} A is positive semidefinite and that it is not a positive definite matrix when n > 1 n>1 n>1.

解:
(i)实对称矩阵必可对角化
存在正交矩阵 P \mathbf{P} P,使得 A = P Λ P T \mathbf{A}=\mathbf{P}\Lambda \mathbf{P}^T A=PΛPT
其中 Λ \Lambda Λ是对角线为 A \mathbf{A} A的特征值的对角矩阵

如果 A ⪰ 0 \mathbf{A}\succeq 0 A0
A = P Λ P T = P Λ 1 2 Λ 1 2 P T \mathbf{A}=\mathbf{P}\Lambda \mathbf{P}^T=\mathbf{P}\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}} \mathbf{P}^T A=PΛPT=PΛ21Λ21PT
B = Λ 1 2 P T \mathbf{B}=\Lambda^{\frac{1}{2}} \mathbf{P}^T B=Λ21PT,即可

如果 A = B B T \mathbf{A}=\mathbf{B}\mathbf{B}^T A=BBT,由上一题, A ⪰ 0 \mathbf{A}\succeq 0 A0

(ii)
A = x x T \mathbf{A}=\mathbf{x}\mathbf{x}^T A=xxT
∀ y ≠ 0 , y T A y = ∥ x T y ∥ 2 ≥ 0 ⇒ A ⪰ 0 \forall \mathbf{y}\neq 0,\mathbf{y}^T\mathbf{Ay}=\|\mathbf{x}^T\mathbf{y}\|^2\ge0\Rightarrow\mathbf{A}\succeq 0 y=0,yTAy=xTy20A0

x = ( 1 , 0 ) T \mathbf{x}=\left(1,0\right)^T x=(1,0)T
A = ( 1 0 0 0 ) ⪰ 0 \mathbf{A}=\begin{pmatrix} 1&0\\ 0&0 \end{pmatrix}\succeq0 A=(1000)0,并不是正定

2.8. Let Q ∈ R n × n \mathbf{Q}\in\mathbb{R}^{n\times n} QRn×n be a positive definite matrix. Show that the “Q-norm” defined by
∥ x ∥ Q = x T Q x \|\mathbf{x}\|_{\mathbf{Q}}=\sqrt{\mathbf{x}^T\mathbf{Q}\mathbf{x}} xQ=xTQx
is indeed a norm.

解:
∀ x ≠ 0 , x T Q x > 0 \forall \mathbf{x}\neq 0,\mathbf{x}^T\mathbf{Qx}>0 x=0,xTQx>0

所以 ∀ x ≠ 0 , ∥ x ∥ Q > 0 \forall \mathbf{x}\neq 0,\|\mathbf{x}\|_\mathbf{Q}>0 x=0,xQ>0,满足非负性

∀ k ∈ R , ∥ k x ∥ Q = ∣ k ∣ ∥ x ∥ Q \forall k\in\mathbb{R},\|k\mathbf{x}\|_\mathbf{Q}=\left|k\right|\|\mathbf{x}\|_{\mathbf{Q}} kR,kxQ=kxQ,满足齐次性

∀ x , y ∈ R + + , x + y < x + y \forall x,y\in\mathbb{R}_{++},\sqrt{x+y}<\sqrt{x}+\sqrt{y} x,yR++,x+y <x +y
所以
∥ x + y ∥ Q = x T Q x + y T Q y ≤ x T Q x + y T Q y = ∥ x ∥ Q + ∥ y ∥ Q \|\mathbf{x}+\mathbf{y}\|_\mathbf{Q}=\sqrt{\mathbf{x}^T\mathbf{Q}\mathbf{x}+\mathbf{y}^T\mathbf{Q}\mathbf{y}}\le \sqrt{\mathbf{x}^T\mathbf{Q}\mathbf{x}}+\sqrt{\mathbf{y}^T\mathbf{Q}\mathbf{y}}=\|\mathbf{x}\|_{\mathbf{Q}}+\|\mathbf{y}\|_{\mathbf{Q}} x+yQ=xTQx+yTQy xTQx +yTQy =xQ+yQ

2.9. Let A \mathbf{A} A be an n × n n\times n n×n positive semidefinite matrix.
(i)Show that for any i ≠ j i\neq j i=j
A i i A j j ≥ A i j 2 \mathbf{A}_{ii}\mathbf{A}_{jj}\ge \mathbf{A}_{ij}^2 AiiAjjAij2
(ii)Show that if for some i ∈ { 1 , 2 , ⋯   , n } A i i = 0 i\in\left\{1,2,\cdots,n\right\}\mathbf{A}_{ii}=0 i{1,2,,n}Aii=0,then the ith row of A \mathbf{A} A consists of zeros.

解:
(i)
x = x 1 e i + x 2 e j \mathbf{x}=x_1\mathbf{e}_i+x_2\mathbf{e}_j x=x1ei+x2ej
x T A x = A i i x 1 2 + 2 A i j 2 x 1 x 2 + A j j x 2 2 = ( x 1 x 2 ) T ( A i i A i j A i j A j j ) ( x 1 x 2 ) ≥ 0 \begin{aligned} \mathbf{x}^T\mathbf{A}\mathbf{x}&=\mathbf{A}_{ii}x_1^2+2\mathbf{A}_{ij}^2x_1 x_2+\mathbf{A}_{jj}x_2^2\\ &=\begin{pmatrix}x_1\\x_2\\\end{pmatrix}^T\begin{pmatrix}\mathbf{A}_{ii}&\mathbf{A}_{ij}\\ \mathbf{A}_{ij}&\mathbf{A}_{jj}\\\end{pmatrix}\begin{pmatrix}x_1\\x_2\\\end{pmatrix}\\ &\ge0 \end{aligned} xTAx=Aiix12+2Aij2x1x2+Ajjx22=(x1x2)T(AiiAijAijAjj)(x1x2)0
所以
( A i i A i j A i j A j j ) ⪰ 0 ⇒ A i i A j j ≥ A i j 2 \begin{pmatrix}\mathbf{A}_{ii}&\mathbf{A}_{ij}\\ \mathbf{A}_{ij}&\mathbf{A}_{jj}\\\end{pmatrix}\succeq 0\Rightarrow \mathbf{A}_{ii}\mathbf{A}_{jj}\ge \mathbf{A}_{ij}^2 (AiiAijAijAjj)0AiiAjjAij2
(ii)
A i j 2 ≤ A i i A j j = 0 ⇒ A i j = 0 \mathbf{A}_{ij}^2\le \mathbf{A}_{ii}\mathbf{A}_{jj}=0\Rightarrow \mathbf{A}_{ij}=0 Aij2AiiAjj=0Aij=0
所以第i行为0

2.10. Let A α \mathbf{A}^{\alpha} Aα be the n × n n\times n n×n matrix ( n > 1 ) \left(n>1\right) (n>1) defined by
A i j α = { α , i = j , 1 , i ≠ j . \mathbf{A}_{ij}^{\alpha}=\begin{cases} \alpha,&i=j,\\ 1,&i\neq j. \end{cases} Aijα={α,1,i=j,i=j.
Show that A α \mathbf{A}^{\alpha} Aα is positive semidefinite if and only if α ≥ 1 \alpha\ge 1 α1

解:
∣ λ I − A α ∣ = ∣ λ − α − 1 − 1 ⋯ − 1 − 1 λ − α − 1 ⋯ − 1 − 1 − 1 λ − α ⋯ − 1 ⋮ ⋮ ⋱ − 1 − 1 − 1 ⋯ λ − α ∣ = ∣ λ − α − n + 1 − 1 − 1 ⋯ − 1 λ − α − n + 1 λ − α − 1 ⋯ − 1 λ − α − n + 1 − 1 λ − α ⋯ − 1 ⋮ ⋮ ⋱ λ − α − n + 1 − 1 − 1 ⋯ λ − α ∣ = ( λ − α − n + 1 ) ∣ 1 − 1 − 1 ⋯ − 1 1 λ − α − 1 ⋯ − 1 1 − 1 λ − α ⋯ − 1 ⋮ ⋮ ⋱ 1 − 1 − 1 ⋯ λ − α ∣ = ( λ − α − n + 1 ) ∣ 1 0 0 ⋯ 0 0 λ − α + 1 0 ⋯ 0 0 0 λ − α + 1 ⋯ 0 ⋮ ⋮ ⋱ 0 0 0 ⋯ λ − α + 1 ∣ = ( λ − α − n + 1 ) ( λ − α + 1 ) n − 1 = 0 \begin{aligned} &\quad \left|\lambda \mathbf{I}-\mathbf{A}^{\alpha}\right|\\ &=\left|\begin{array}{cccc} \lambda -\alpha & -1 & -1&\cdots& -1\\ -1 & \lambda -\alpha& -1 & \cdots & -1\\ -1 & -1 & \lambda -\alpha & \cdots& -1\\ \vdots & \vdots & & \ddots & \\ -1 & -1 & -1 & \cdots &\lambda -\alpha\\ \end{array}\right| \\ &=\left|\begin{array}{cccc} \lambda-\alpha-n+1 & -1 & -1&\cdots& -1\\ \lambda-\alpha-n+1 & \lambda -\alpha& -1 & \cdots & -1\\ \lambda-\alpha-n+1 & -1 & \lambda -\alpha & \cdots& -1\\ \vdots & \vdots & & \ddots & \\ \lambda-\alpha-n+1 & -1 & -1 & \cdots &\lambda -\alpha\\ \end{array}\right| \\ &=(\lambda-\alpha-n+1)\left|\begin{array}{cccc} 1 & -1 & -1&\cdots& -1\\ 1 & \lambda -\alpha& -1 & \cdots & -1\\ 1 & -1 & \lambda -\alpha & \cdots& -1\\ \vdots & \vdots & & \ddots & \\ 1 & -1 & -1 & \cdots &\lambda -\alpha\\ \end{array}\right| \\ &=\left(\lambda-\alpha-n+1\right)\left|\begin{array}{cccc} 1 & 0 & 0&\cdots& 0\\ 0 & \lambda -\alpha+1& 0 & \cdots & 0\\ 0 & 0 & \lambda -\alpha +1& \cdots&0\\ \vdots & \vdots & & \ddots & \\ 0 & 0 & 0 & \cdots &\lambda -\alpha+1\\ \end{array}\right| \\ &=\left(\lambda-\alpha-n+1\right)\left(\lambda-\alpha+1\right)^{n-1}\\ &=0 \end{aligned} λIAα=λα1111λα1111λα1111λα=λαn+1λαn+1λαn+1λαn+11λα1111λα1111λα=(λαn+1)11111λα1111λα1111λα=(λαn+1)10000λα+10000λα+10000λα+1=(λαn+1)(λα+1)n1=0
所以特征值为 α + n − 1 \alpha+n-1 α+n1和n-1个 α − 1 \alpha-1 α1
{ α + n − 1 ≥ 0 α − 1 ≥ 0 ⇔ α ≥ 1 \begin{cases} \alpha+n-1\ge0\\ \alpha-1 \ge 0 \end{cases}\Leftrightarrow\alpha\ge 1 {α+n10α10α1
所以 A α ⪰ 0 ⇔ α ≥ 1 \mathbf{A}^\alpha \succeq 0\Leftrightarrow \alpha\ge 1 Aα0α1

2.11. Let d ∈ Δ n \mathbf{d}\in\Delta_n dΔn ( Δ n \Delta_n Δn being the unit-simplex).Show that the n × n n\times n n×n matrix A \mathbf{A} A defined by
A i j = { d i − d i 2 , i = j , − d i d j , i ≠ j , \mathbf{A}_{ij}=\begin{cases} d_i-d_i^2,&i=j,\\ -d_i d_j, &i\neq j, \end{cases} Aij={didi2,didj,i=j,i=j,
is positive semidefinite.

解:
∣ A i i ∣ − ∑ i ≠ j ∣ A i j ∣ = d i − d i 2 − ∑ i ≠ j d i d j = d i − ∑ j = 1 n d i d j = d i − d i ∑ j = 1 n d j = d i − d i = 0 \begin{aligned} &\quad \left|A_{ii}\right|-\sum_{i\neq j}\left|\mathbf{A}_{ij}\right|\\ &=d_i-d_i^2-\sum_{i\neq j}d_i d_j\\ &=d_i-\sum_{j=1}^{n} d_i d_j\\ &=d_i-d_i \sum_{j=1}^{n} d_j\\ &=d_i-d_i\\ &=0 \end{aligned} Aiii=jAij=didi2i=jdidj=dij=1ndidj=didij=1ndj=didi=0
所以
∣ A i i ∣ ≥ ∑ i ≠ j ∣ A i j ∣ \quad \left|A_{ii}\right|\ge \sum_{i\neq j}\left|\mathbf{A}_{ij}\right| Aiii=jAij

所以 A \mathbf{A} A是对角占优矩阵
A i i ≥ 0 \mathbf{A}_{ii}\ge 0 Aii0
所以 A ⪰ 0 \mathbf{A}\succeq 0 A0

2.12. Prove that a 2 × 2 2\times 2 2×2 matrix A \mathbf{A} A is negative semidefinite if and only if T r ( A ) ≤ 0 Tr(\mathbf{A})\le 0 Tr(A)0 and d e t ( A ) ≥ 0 det(\mathbf{A})\ge 0 det(A)0.

解:
{ T r ( A ) = λ 1 + λ 2 ≤ 0 d e t ( A ) = λ 1 λ 2 ≥ 0 ⇔ λ 1 , λ 2 ≤ 0 ⇔ A ⪯ 0 \begin{cases} Tr(\mathbf{A})=\lambda_1+\lambda_2\le 0\\ det(\mathbf{A})=\lambda_1\lambda_2\ge 0\\ \end{cases}\Leftrightarrow \lambda_1,\lambda_2\le0 \Leftrightarrow \mathbf{A}\preceq 0 {Tr(A)=λ1+λ20det(A)=λ1λ20λ1,λ20A0

2.13.For each of the following matrices determine whether they are positive/negative semidefinite/ definite or indefinite:
(i) ( 2 2 0 0 2 2 0 0 0 0 3 1 0 0 1 3 ) \begin{pmatrix} 2&2&0&0\\ 2&2&0&0\\ 0&0&3&1\\ 0&0&1&3\\ \end{pmatrix} 2200220000310013
(ii) ( 2 2 2 2 3 3 2 3 3 ) \begin{pmatrix} 2&2&2\\ 2&3&3\\ 2&3&3\\ \end{pmatrix} 222233233
(iii) ( 2 1 3 1 2 1 3 1 2 ) \begin{pmatrix} 2&1&3\\ 1&2&1\\ 3&1&2\\ \end{pmatrix} 213121312
(iv) ( − 5 1 1 1 − 7 1 1 1 − 5 ) \begin{pmatrix} -5&1&1\\ 1&-7&1\\ 1&1&-5\\ \end{pmatrix} 511171115

解:
(i) A \mathbf{A} A是对角占优矩阵,对角线元素非负,所以 A ⪰ 0 \mathbf{A}\succeq 0 A0
(ii)
∣ λ I − B ∣ = ∣ λ − 2 − 2 − 2 − 2 λ − 3 − 3 − 2 − 3 λ − 3 ∣ = ∣ λ − 2 − 2 − 2 − 2 λ − 3 − 3 0 − λ λ ∣ = ∣ λ − 2 − 4 − 2 − 2 λ − 6 − 3 0 0 λ ∣ = λ ( λ 2 − 8 λ + 12 − 8 ) = λ ( λ 2 − 8 λ + 4 ) = λ ( λ − ( 4 + 2 3 ) ) ( λ − ( 4 − 2 3 ) ) \begin{aligned} &\quad \left|\lambda \mathbf{I}-\mathbf{B}\right|\\ &=\left|\begin{array}{cccc} \lambda-2&-2&-2\\ -2 &\lambda-3 & -3\\ -2 & -3 &\lambda-3 \end{array}\right|\\ &=\left|\begin{array}{cccc} \lambda-2&-2&-2\\ -2 &\lambda-3 & -3\\ 0 & -\lambda &\lambda \end{array}\right|\\ &=\left|\begin{array}{cccc} \lambda-2&-4&-2\\ -2 &\lambda-6 & -3\\ 0 & 0 &\lambda \end{array}\right|\\ &=\lambda(\lambda^2-8\lambda+12-8)\\ &=\lambda(\lambda^2-8\lambda+4)\\ &=\lambda\left(\lambda-(4+2\sqrt{3})\right)\left(\lambda-(4-2\sqrt{3})\right) \end{aligned} λIB=λ2222λ3323λ3=λ2202λ3λ23λ=λ2204λ6023λ=λ(λ28λ+128)=λ(λ28λ+4)=λ(λ(4+23 ))(λ(423 ))
所以 B ⪰ 0 \mathbf{B}\succeq 0 B0
(iii)
∣ λ I − B ∣ = ∣ λ − 2 − 1 − 3 − 1 λ − 2 − 1 − 3 − 1 λ − 2 ∣ = ∣ λ + 1 − 1 − 3 0 λ − 2 − 1 − λ − 1 − 1 λ − 2 ∣ = ∣ λ + 1 − 1 − 3 0 λ − 2 − 1 0 − 2 λ − 5 ∣ = ( λ + 1 ) ( λ 2 − 7 λ + 8 ) = ( λ + 1 ) ( λ − 7 + 17 2 ) ( λ − 7 − 17 2 ) \begin{aligned} &\quad \left|\lambda \mathbf{I}-\mathbf{B}\right|\\ &=\left|\begin{array}{cccc} \lambda-2&-1&-3\\ -1 &\lambda-2 & -1\\ -3 & -1 &\lambda-2 \end{array}\right|\\ &=\left|\begin{array}{cccc} \lambda+1&-1&-3\\ 0 &\lambda-2 & -1\\ -\lambda-1 & -1 &\lambda-2 \end{array}\right|\\ &=\left|\begin{array}{cccc} \lambda+1&-1&-3\\ 0 &\lambda-2 & -1\\ 0 & -2 &\lambda-5 \end{array}\right|\\ &=\left(\lambda+1\right)\left(\lambda^2-7\lambda+8\right)\\ &=\left(\lambda+1\right)\left(\lambda-\frac{7+\sqrt{17}}{2}\right)\left(\lambda-\frac{7-\sqrt{17}}{2}\right)\\ \end{aligned} λIB=λ2131λ2131λ2=λ+10λ11λ2131λ2=λ+1001λ2231λ5=(λ+1)(λ27λ+8)=(λ+1)(λ27+17 )(λ2717 )
特征值有正有负,所以 C \mathbf{C} C不定

(iv)
因为 − D -\mathbf{D} D是严格对角占优矩阵,且对角线元素是正的,所以
− D ≻ 0 ⇒ D ≺ 0 -\mathbf{D}\succ 0\Rightarrow \mathbf{D}\prec 0 D0D0

2.14. (Schur complement lemma) Let
D = ( A b b T c ) \mathbf{D}=\begin{pmatrix} \mathbf{A}&\mathbf{b}\\ \mathbf{b}^T& c \end{pmatrix} D=(AbTbc)
where A ∈ R n × n , b ∈ R n , c ∈ R \mathbf{A}\in\mathbb{R}^{n\times n},\mathbf{b}\in\mathbb{R}^n,c\in\mathbb{R} ARn×n,bRn,cR.Suppose that A ≻ 0 \mathbf{A}\succ 0 A0.Prove that D ⪰ 0 \mathbf{D}\succeq 0 D0 if and only if c − b T A − 1 b ≥ 0 c-\mathbf{b}^T\mathbf{A}^{-1}\mathbf{b}\ge 0 cbTA1b0.

解:

T = ( A 0 0 c − b T A − 1 b ) \mathbf{T}=\begin{pmatrix} \mathbf{A}&0\\ 0&c-\mathbf{b}^T\mathbf{A}^{-1}\mathbf{b} \end{pmatrix} T=(A00cbTA1b)
N = ( I 0 b T A − 1 1 ) \mathbf{N}=\begin{pmatrix} \mathbf{I}&0\\ \mathbf{b}^{T}\mathbf{A}^{-1}&1 \end{pmatrix} N=(IbTA101)
D = N T N T \mathbf{D}=\mathbf{N}\mathbf{T}\mathbf{N}^T D=NTNT
于是显然成立

2.15. For each of the following functions, determine whether it is coercive or not:
(i) f ( x 1 , x 2 ) = x 1 4 + x 2 4 f\left(x_1,x_2\right)=x_1^4+x_2^4 f(x1,x2)=x14+x24
(ii) f ( x 1 , x 2 ) = e x 1 2 + e x 2 2 − x 1 200 − x 2 200 f\left(x_1,x_2\right)=e^{x_1^2}+e^{x_2^2}-x_1^{200}-x_2^{200} f(x1,x2)=ex12+ex22x1200x2200
(iii) f ( x 1 , x 2 ) = 2 x 1 2 − 8 x 1 x 2 + x 2 2 f\left(x_1,x_2\right)=2x_1^2-8x_1 x_2+x_2^2 f(x1,x2)=2x128x1x2+x22
(iv) f ( x 1 , x 2 ) = 4 x 1 2 + 2 x 1 x 2 + 2 x 2 2 f\left(x_1,x_2\right)=4x_1^2+2x_1 x_2+2x_2^2 f(x1,x2)=4x12+2x1x2+2x22
(v) f ( x 1 , x 2 , x 3 ) = x 1 3 + x 2 3 + x 3 3 f\left(x_1,x_2,x_3\right)=x_1^3+x_2^3+x_3^3 f(x1,x2,x3)=x13+x23+x33
(vi) f ( x 1 , x 2 ) = x 1 2 − 2 x 1 x 2 2 + x 2 4 f\left(x_1,x_2\right)=x_1^2-2x_1 x_2^2+x_2^4 f(x1,x2)=x122x1x22+x24
(vii) f ( x ) = x T A x ∥ x ∥ + 1 f\left(\mathbf{x}\right)=\frac{\mathbf{x}^T\mathbf{Ax}}{\|\mathbf{x}\|+1} f(x)=x+1xTAx,where A ∈ R n × n \mathbf{A}\in\mathbb{R}^{n\times n} ARn×n is positive definite.

解:
(i)
∥ x ∥ → ∞ \|\mathbf{x}\|\to \infty x,
f ( x 1 , x 2 ) ≥ ∥ x ∥ 2 → ∞ f\left(x_1,x_2\right)\ge \|\mathbf{x}\|^2\to\infty f(x1,x2)x2
所以是

(ii)
e x 1 2 + e x 2 2 e^{x_1^2}+e^{x_2^2} ex12+ex22占据主导,所以是

(iii)
A = ( 2 − 4 − 4 1 ) \mathbf{A}=\begin{pmatrix} 2&-4\\ -4&1\\ \end{pmatrix} A=(2441)
并不正定,所以不是

(iv)
A = ( 4 1 1 2 ) ≻ 0 \mathbf{A}=\begin{pmatrix} 4&1\\ 1&2\\ \end{pmatrix}\succ0 A=(4112)0
所以是

(v)
x 1 → − ∞ , x 2 → − ∞ , x 3 → − ∞ x_1\to -\infty,x_2\to -\infty,x_3\to -\infty x1,x2,x3
f ( x 1 , x 2 , x 3 ) → − ∞ f\left(x_1,x_2,x_3\right)\to-\infty f(x1,x2,x3)
所以不是

(vi)
f ( x 1 , x 2 ) = ( x 1 − x 2 2 ) 2 f\left(x_1,x_2\right)=\left(x_1-x_2^2\right)^2 f(x1,x2)=(x1x22)2
v = ( t , t ) T \mathbf{v}=\left(t,\sqrt{t}\right)^T v=(t,t )T
t → ∞ t\to \infty t时, ∥ v ∥ → ∞ \|\mathbf{v}\|\to \infty v
但是 f ( v ) → 0 f\left(\mathbf{v}\right)\to 0 f(v)0
所以不是

(vii)
f ( x ) ≥ λ m i n ∥ x ∥ 2 ∥ x ∥ + 1 f\left(\mathbf{x}\right)\ge\frac{\lambda_{min}\|\mathbf{x}\|^2}{\|\mathbf{x}\|+1} f(x)x+1λminx2

∥ x ∥ → ∞ \|\mathbf{x}\|\to \infty x时,
λ 1 ∥ x ∥ ∥ x ∥ + 1 → ∞ \frac{\lambda_1\|\mathbf{x}\|}{\|\mathbf{x}\|+1}\to \infty x+1λ1x
所以是

2.15. Find a function f : R 2 → R f:\mathbb{R}^2\to \mathbb{R} f:R2R which is not coercive and satisfies that for any α ∈ R \alpha \in\mathbb{R} αR
lim ⁡ ∣ x 1 ∣ → ∞ f ( x 1 , α x 1 ) = lim ⁡ ∣ x 2 ∣ → ∞ f ( α x 2 , x 2 ) = ∞ \lim\limits_{\left|x_1\right|\to\infty}f\left(x_1,\alpha x_1\right)=\lim\limits_{\left|x_2\right|\to\infty}f\left(\alpha x_2,x_2\right)=\infty x1limf(x1,αx1)=x2limf(αx2,x2)=

解:
f ( x 1 , x 2 ) = ( x 1 − x 2 2 ) 2 f\left(x_1,x_2\right)=\left(x_1-x_2^2\right)^2 f(x1,x2)=(x1x22)2

2.17. For each of the following functions, find all the stationary points and classify them according to whether they are saddle points, strict/nonstrict local/global minimum/ maximum points:
(i) f ( x 1 , x 2 ) = ( 4 x 1 2 − x 2 ) 2 f\left(x_1,x_2\right)=\left(4x_1^2-x_2\right)^2 f(x1,x2)=(4x12x2)2
(ii) f ( x 1 , x 2 , x 3 ) = x 1 4 − 2 x 1 2 + x 2 2 + 2 x 2 x 3 + 2 x 3 2 f\left(x_1,x_2,x_3\right)=x_1^4-2x_1^2+x_2^2+2x_2x_3+2x_3^2 f(x1,x2,x3)=x142x12+x22+2x2x3+2x32
(iii) f ( x 1 , x 2 ) = 2 x 2 3 − 6 x 2 2 + 3 x 1 2 x 2 f\left(x_1,x_2\right)=2x_2^3-6x_2^2+3x_1^2x_2 f(x1,x2)=2x236x22+3x12x2
(iv) f ( x 1 , x 2 ) = x 1 4 + 2 x 1 2 x 2 + x 2 2 − 4 x 1 2 − 8 x 1 − 8 x 2 f\left(x_1,x_2\right)=x_1^4+2x_1^2x_2+x_2^2-4x_1^2-8x_1-8x_2 f(x1,x2)=x14+2x12x2+x224x128x18x2
(v) f ( x 1 , x 2 ) = ( x 1 − 2 x 2 ) 4 + 64 x 1 x 2 f\left(x_1,x_2\right)=\left(x_1-2x_2\right)^4+64x_1x_2 f(x1,x2)=(x12x2)4+64x1x2
(vi) f ( x 1 , x 2 ) = 2 x 1 2 + 3 x 2 2 − 2 x 1 x 2 + 2 x 1 − 3 x 2 f\left(x_1,x_2\right)=2x_1^2+3x_2^2-2x_1x_2+2x_1-3x_2 f(x1,x2)=2x12+3x222x1x2+2x13x2
(vii) f ( x 1 , x 2 ) = x 1 2 + 4 x 1 x 2 + x 2 2 + x 1 − x 2 f\left(x_1,x_2\right)=x_1^2+4x_1x_2+x_2^2+x_1-x_2 f(x1,x2)=x12+4x1x2+x22+x1x2

解:
(i)
∇ f = ( 16 x 1 ( 4 x 1 2 − x 2 ) − 2 ( 4 x 1 2 − x 2 ) ) = 0 ⇒ 4 x 1 2 = x 2 \nabla f= \begin{pmatrix} 16x_1\left(4x_1^2-x_2\right)\\ -2\left(4x_1^2-x_2\right)\\ \end{pmatrix}=0\Rightarrow4x_1^2=x_2 f=(16x1(4x12x2)2(4x12x2))=04x12=x2
f ( x 1 , x 2 ) ≥ 0 = f ( x 1 , 4 x 1 2 ) f\left(x_1,x_2\right)\ge 0=f\left(x_1,4x_1^2\right) f(x1,x2)0=f(x1,4x12)
所以 ( x 1 , 4 x 1 2 ) \left(x_1,4x_1^2\right) (x1,4x12)上的点是全局最小值点

或者
∇ 2 f ( x 1 , 4 x 1 2 ) = ( 16 ( 12 x 1 2 − x 2 ) − 16 x 1 − 16 x 1 2 x 2 ) = ( 128 x 1 2 − 16 x 1 − 16 x 1 2 x 2 ) ⪰ 0 \nabla^2f\left(x_1,4x_1^2\right)= \begin{pmatrix} 16\left(12x_1^2-x_2\right)&-16x_1\\ -16x_1&2x_2 \end{pmatrix}= \begin{pmatrix} 128x_1^2&-16x_1\\ -16x_1&2x_2 \end{pmatrix}\succeq 0 2f(x1,4x12)=(16(12x12x2)16x116x12x2)=(128x1216x116x12x2)0
因此也是全局最小值点

(ii)
∇ f = ( 4 x 1 3 − 4 x 1 2 x 2 + 2 x 3 2 x 2 + 4 x 3 ) = 0 ⇒ ( x 1 x 2 x 3 ) = ( 0 0 0 ) o r ( 1 0 0 ) o r ( − 1 0 0 ) \nabla f= \begin{pmatrix} 4x_1^3-4x_1\\ 2x_2+2x_3\\ 2x_2+4x_3\\ \end{pmatrix}=0\Rightarrow \begin{pmatrix} x_1\\ x_2\\ x_3\\ \end{pmatrix}= \begin{pmatrix} 0\\ 0\\ 0\\ \end{pmatrix} or \begin{pmatrix} 1\\ 0\\ 0\\ \end{pmatrix} or \begin{pmatrix} -1\\ 0\\ 0\\ \end{pmatrix} f=4x134x12x2+2x32x2+4x3=0x1x2x3=000or100or100
∇ 2 f = ( 12 x 1 2 − 4 0 0 0 2 2 0 2 4 ) \nabla^2f= \begin{pmatrix} 12x_1^2-4&0&0\\ 0&2&2\\ 0&2&4\\ \end{pmatrix} 2f=12x12400022024
∇ 2 f ( 0 , 0 , 0 ) \nabla^2 f\left(0,0,0\right) 2f(0,0,0)不定,所以 ( 0 , 0 , 0 ) \left(0,0,0\right) (0,0,0)是鞍点
∇ 2 f ( 1 , 0 , 0 ) ≻ 0 \nabla^2 f\left(1,0,0\right)\succ 0 2f(1,0,0)0,所以 ( 1 , 0 , 0 ) \left(1,0,0\right) (1,0,0)是严格局部最小值点
∇ 2 f ( − 1 , 0 , 0 ) ≻ 0 \nabla^2 f\left(-1,0,0\right)\succ 0 2f(1,0,0)0,所以 ( − 1 , 0 , 0 ) \left(-1,0,0\right) (1,0,0)是严格局部最小值点
(iii)
∇ f = ( 6 x 1 x 2 6 x 2 2 − 12 x 2 + 3 x 1 2 ) = 0 ⇒ ( x 1 x 2 ) = ( 0 0 ) o r ( 0 2 ) \nabla f= \begin{pmatrix} 6x_1x_2\\ 6x_2^2-12x_2+3x_1^2\\ \end{pmatrix}=0\Rightarrow \begin{pmatrix} x_1\\ x_2\\ \end{pmatrix}= \begin{pmatrix} 0\\ 0\\ \end{pmatrix} or \begin{pmatrix} 0\\ 2\\ \end{pmatrix} f=(6x1x26x2212x2+3x12)=0(x1x2)=(00)or(02)
∇ 2 f = 6 ( x 2 x 1 x 1 2 ( x 2 − 1 ) ) \nabla^2f=6 \begin{pmatrix} x_2&x_1\\ x_1&2\left(x_2-1\right)\\ \end{pmatrix} 2f=6(x2x1x12(x21))
∇ 2 f ( 0 , 0 ) \nabla^2 f\left(0,0\right) 2f(0,0)不定,所以 ( 0 , 0 ) \left(0,0\right) (0,0)是鞍点
∇ 2 f ( 0 , 2 ) ≻ 0 \nabla^2 f\left(0,2\right)\succ 0 2f(0,2)0,所以 ( 0 , 2 ) \left(0,2\right) (0,2)是严格局部最小值点
(iv)
∇ f = ( 4 x 1 3 + 4 x 1 x 2 − 8 x 1 − 8 2 x 1 2 + 2 x 2 − 8 ) = 0 ⇒ ( x 1 x 2 ) = ( 1 3 ) \nabla f= \begin{pmatrix} 4x_1^3+4x_1x_2-8x_1-8\\ 2x_1^2+2x_2-8\\ \end{pmatrix}=0\Rightarrow \begin{pmatrix} x_1\\ x_2\\ \end{pmatrix}= \begin{pmatrix} 1\\ 3\\ \end{pmatrix} f=(4x13+4x1x28x182x12+2x28)=0(x1x2)=(13)
∇ 2 f ( 1 , 3 ) = 2 ( 6 x 1 2 + 2 x 2 − 4 2 x 1 2 x 1 1 ) = 2 ( 8 2 2 1 ) ≻ 0 \nabla^2f\left(1,3\right)= 2\begin{pmatrix} 6x_1^2+2x_2-4&2x_1\\ 2x_1&1\\ \end{pmatrix}= 2\begin{pmatrix} 8&2\\ 2&1\\ \end{pmatrix}\succ 0 2f(1,3)=2(6x12+2x242x12x11)=2(8221)0
所以 ( 1 , 3 ) \left(1,3\right) (1,3)是严格局部最小值点
又因为 f ( x 1 , x 2 ) = ( x 1 2 + x 2 − 4 ) 2 + ( x 1 − 1 ) 2 − 20 f\left(x_1,x_2\right)=\left(x_1^2+x_2-4\right)^2+\left(x_1-1\right)^2-20 f(x1,x2)=(x12+x24)2+(x11)220
所以是严格全局最小值点
(v)
∇ f = ( 4 ( x 1 − 2 x 2 ) 3 + 64 x 2 − 8 ( x 1 − 2 x 2 ) 3 + 64 x 1 ) = 0 ⇒ ( x 1 x 2 ) = ( 0 0 ) o r ( − 1 1 2 ) o r ( 1 − 1 2 ) \nabla f= \begin{pmatrix} 4\left(x_1-2x_2\right)^3+64x_2\\ -8\left(x_1-2x_2\right)^3+64x_1\\ \end{pmatrix}=0\Rightarrow \begin{pmatrix} x_1\\ x_2\\ \end{pmatrix}= \begin{pmatrix} 0\\ 0\\ \end{pmatrix}or \begin{pmatrix} -1\\ \frac{1}{2}\\ \end{pmatrix}or \begin{pmatrix} 1\\ -\frac{1}{2}\\ \end{pmatrix} f=(4(x12x2)3+64x28(x12x2)3+64x1)=0(x1x2)=(00)or(121)or(121)
∇ 2 f = 4 ( 3 ( x 1 − 2 x 2 ) 2 − 6 ( x 1 − 2 x 2 ) 2 + 16 − 6 ( x 1 − 2 x 2 ) 2 + 16 12 ( x 1 − 2 x 2 ) 2 ) \nabla^2f=4 \begin{pmatrix} 3\left(x_1-2x_2\right)^2&-6\left(x_1-2x_2\right)^2+16\\ -6\left(x_1-2x_2\right)^2+16&12\left(x_1-2x_2\right)^2\\ \end{pmatrix} 2f=4(3(x12x2)26(x12x2)2+166(x12x2)2+1612(x12x2)2)
∇ 2 f ( 0 , 0 ) \nabla^2 f\left(0,0\right) 2f(0,0)不定,所以 ( 0 , 0 ) \left(0,0\right) (0,0)是鞍点
∇ 2 f ( − 1 , 1 2 ) ≻ 0 \nabla^2 f\left(-1,\frac{1}{2}\right)\succ 0 2f(1,21)0,所以 ( − 1 , 1 2 ) \left(-1,\frac{1}{2}\right) (1,21)是严格局部最小值点
∇ 2 f ( 1 , − 1 2 ) ≻ 0 \nabla^2 f\left(1,-\frac{1}{2}\right)\succ 0 2f(1,21)0,所以 ( 1 , − 1 2 ) \left(1,-\frac{1}{2}\right) (1,21)是严格局部最小值点
(vi)
∇ f = ( 4 x 1 − 2 x 2 + 2 6 x 2 − 2 x 1 − 3 ) = 0 ⇒ ( x 1 x 2 ) = ( − 3 10 2 5 ) \nabla f= \begin{pmatrix} 4x_1-2x_2+2\\ 6x_2-2x_1-3\\ \end{pmatrix}=0\Rightarrow \begin{pmatrix} x_1\\ x_2\\ \end{pmatrix}= \begin{pmatrix} -\frac{3}{10}\\ \frac{2}{5}\\ \end{pmatrix} f=(4x12x2+26x22x13)=0(x1x2)=(10352)
∇ 2 f = ( 4 − 2 − 2 6 ) ≻ 0 \nabla^2f= \begin{pmatrix} 4&-2\\ -2&6\\ \end{pmatrix}\succ0 2f=(4226)0
所以 ( − 3 10 , 2 5 ) \left(-\frac{3}{10},\frac{2}{5}\right) (103,52)是严格全局最小值点
(vii)
∇ f = ( 2 x 1 + 4 x 2 + 1 4 x 1 + 2 x 2 − 1 ) = 0 ⇒ ( x 1 x 2 ) = ( 1 2 − 1 2 ) \nabla f= \begin{pmatrix} 2x_1+4x_2+1\\ 4x_1+2x_2-1\\ \end{pmatrix}=0\Rightarrow \begin{pmatrix} x_1\\ x_2\\ \end{pmatrix}= \begin{pmatrix} \frac{1}{2}\\ -\frac{1}{2}\\ \end{pmatrix} f=(2x1+4x2+14x1+2x21)=0(x1x2)=(2121)
∇ 2 f = ( 2 4 4 2 ) \nabla^2f= \begin{pmatrix} 2&4\\ 4&2\\ \end{pmatrix} 2f=(2442)
∇ 2 f \nabla^2f 2f不定,所以 ( 1 2 , − 1 2 ) \left(\frac{1}{2},-\frac{1}{2}\right) (21,21)是鞍点
2.18. Let f f f be twice continuously differentiable function over R n \mathbb{R}^n Rn. Suppose that ∇ 2 f ( x ) ≻ 0 \nabla^2 f\left(\mathbf{x}\right)\succ 0 2f(x)0 for any x ∈ R n \mathbf{x}\in\mathbb{R}^n xRn.Prove that a stationary point of f f f is necessarily a strict global minimum point.

解:
(应该是说如果是驻点,则是严格全局最小点吧)

x ∗ \mathbf{x}^* x是一个驻点
f ( x ) − f ( x ∗ ) = 1 2 ( x − x ∗ ) T ∇ 2 f ( z ) ( x − x ∗ ) > 0 f\left(\mathbf{x}\right)-f\left(\mathbf{x}^*\right)=\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^*\right)^T\nabla^2 f\left(\mathbf{z}\right)\left(\mathbf{x}-\mathbf{x}^*\right)>0 f(x)f(x)=21(xx)T2f(z)(xx)>0
其中 x ≠ x ∗ \mathbf{x}\neq \mathbf{x}^* x=x, z \mathbf{z} z介于 x , x ∗ \mathbf{x},\mathbf{x}^* x,x之间

可以得到,这个驻点严格全局最小值
且是唯一的,否则与海瑟矩阵正定矛盾

2.19. Let f ( x ) = x T A x + 2 b T x + c f\left(\mathbf{x}\right)=\mathbf{x}^T\mathbf{Ax}+2\mathbf{b}^T\mathbf{x}+c f(x)=xTAx+2bTx+c, where A ∈ R n × n \mathbf{A}\in\mathbb{R}^{n\times n} ARn×n is symmetric, b ∈ R n \mathbf{b}\in\mathbf{R}^n bRn, and c ∈ R c\in \mathbb{R} cR. Suppose that A ⪰ 0 \mathbf{A}\succeq 0 A0.Show that f is bounded below over R n \mathbb{R}^n Rn if and only if b ∈ R a n g e ( A ) = { A y : y ∈ R n } \mathbf{b}\in Range\left(\mathbf{A}\right)=\left\{\mathbf{Ay}:\mathbf{y}\in\mathbb{R}^n\right\} bRange(A)={Ay:yRn}.

(A function f is bounded below over a set C C C if there exists a constant α \alpha α such that f ( x ) ≥ α f\left(\mathbf{x}\right)\ge \alpha f(x)α for any x ∈ C \mathbf{x}\in C xC)

解:

f ( x ) = x T A x + 2 b T x + c ∇ f ( x ) = 2 A x + 2 b ∇ f 2 ( x ) = 2 A f\left(\mathbf{x}\right)=\mathbf{x}^T\mathbf{Ax}+2\mathbf{b}^T\mathbf{x}+c\\ \nabla f\left(\mathbf{x}\right)=2\mathbf{Ax}+2\mathbf{b}\\ \nabla f^2\left(\mathbf{x}\right)=2\mathbf{A} f(x)=xTAx+2bTx+cf(x)=2Ax+2bf2(x)=2A

如果 b ∈ R a n g e ( A ) = { A y : y ∈ R n } \mathbf{b}\in Range\left(\mathbf{A}\right)=\left\{\mathbf{Ay}:\mathbf{y}\in\mathbb{R}^n\right\} bRange(A)={Ay:yRn},
说明 ∇ f ( x ) = 0 \nabla f\left(\mathbf{x}\right)=0 f(x)=0有解,则 f f f存在全局最小值,所以有下界

如果 f f f有下界,假设 b ∉ R a n g e ( A ) \mathbf{b}\notin Range\left(\mathbf{A}\right) b/Range(A)
b ⊥̸ N ( A T ) = N ( A ) \mathbf{b}\not\perp N\left(\mathbf{A}^T\right)=N\left(\mathbf{A}\right) bN(AT)=N(A)(其实我也不确定这个对不对)
于是存在 y \mathbf{y} y,使得 y T A y = 0 , b T y < 0 \mathbf{y}^T\mathbf{Ay}=0,\mathbf{b}^T\mathbf{y}<0 yTAy=0,bTy<0
λ → + ∞ \lambda \to +\infty λ+时,有 f ( λ y ) → − ∞ f\left(\lambda \mathbf{y}\right)\to -\infty f(λy),矛盾
所以 b ∈ R a n g e ( A ) = { A y : y ∈ R n } \mathbf{b}\in Range\left(\mathbf{A}\right)=\left\{\mathbf{Ay}:\mathbf{y}\in\mathbb{R}^n\right\} bRange(A)={Ay:yRn}

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值