核范数学习

A ∈ R m × n \mathbf{A}\in\mathbb{R}^{m\times n} ARm×n,
核范数定义:
∥ A ∥ ∗ = ∑ i = 1 min ⁡ { m , n } σ i = ∑ i = 1 r σ i = tr ⁡ ( A T A ) \|\mathbf{A}\|_{*}=\sum_{i=1}^{\min\left\{m,n\right\}}\sigma_i=\sum_{i=1}^{r}\sigma_i=\operatorname{tr}\left(\sqrt{\mathbf{A}^T\mathbf{A}}\right) A=i=1min{m,n}σi=i=1rσi=tr(ATA )
其中 σ i \sigma_i σi为奇异值, r = rank ⁡ ( A ) r=\operatorname{rank}\left(\mathbf{A}\right) r=rank(A)

接下来证明核范数是一个范数
设奇异值 σ 1 ≥ σ 2 ≥ ⋯ ≥ σ r ≥ σ r + 1 = ⋯ = σ min ⁡ { m , n } = 0 \sigma_1\ge \sigma_2\ge\cdots\ge \sigma_r\ge \sigma_{r+1}=\cdots=\sigma_{\min\left\{m,n\right\}}= 0 σ1σ2σrσr+1==σmin{m,n}=0
非负性:
σ i ≥ 0 \sigma_i\ge 0 σi0
A ≠ 0 \mathbf{A}\neq 0 A=0时, σ 1 > 0 \sigma_1>0 σ1>0,所以 ∥ A ∥ ∗ > 0 \|\mathbf{A}\|_*>0 A>0
A = 0 \mathbf{A}=0 A=0时, σ 1 = 0 \sigma_1=0 σ1=0,所以 ∥ A ∥ ∗ = 0 \|\mathbf{A}\|_*=0 A=0

齐次性:
∥ λ A ∥ ∗ = tr ⁡ ( λ 2 A T A ) = ∣ λ ∣ tr ⁡ ( A T A ) = ∣ λ ∣ ∥ A ∥ ∗ \|\lambda\mathbf{A}\|_*=\operatorname{tr}\left(\sqrt{\lambda^2\mathbf{A}^T\mathbf{A}}\right)=\left|\lambda\right|\operatorname{tr}\left(\sqrt{\mathbf{A}^T\mathbf{A}}\right)=\left|\lambda\right|\|\mathbf{A}\|_* λA=tr(λ2ATA )=λtr(ATA )=λA

引理
∥ x ∥ ≤ 1 , ∥ y ∥ ≤ 1 \|\mathbf{x}\|\le1,\|\mathbf{y}\|\le1 x1,y1
x T A y ≤ σ 1 \mathbf{x}^T\mathbf{Ay}\le\sigma_1 xTAyσ1
证明:
x T A y ≤ ∥ x ∥ ∥ A y ∥ ≤ ∥ A ∥ = σ 1 \mathbf{x}^T\mathbf{Ay}\le\|\mathbf{x}\|\|\mathbf{Ay}\|\le\|\mathbf{A}\|=\sigma_1 xTAyx∥∥AyA=σ1

三角不等式:
A \mathbf{A} A进行奇异值分解和精简奇异值分解
A = U Σ V T = U r Σ r V r T \mathbf{A}=\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T=\mathbf{U}_r\mathbf{\Sigma}_r\mathbf{V}_r^T A=VT=UrΣrVrT
接下来证明 sup ⁡ σ 1 ( Q ) ≤ 1 ⟨ Q , A ⟩ = ∥ A ∥ ∗ \sup_{\sigma_1\left(\mathbf{Q}\right)\le 1}\left\langle\mathbf{Q},\mathbf{A}\right\rangle=\|\mathbf{A}\|_* supσ1(Q)1Q,A=A
其中 ⟨ Q , A ⟩ = tr ⁡ ( Q T A ) \left\langle\mathbf{Q},\mathbf{A}\right\rangle=\operatorname{tr}\left(\mathbf{Q}^T\mathbf{A}\right) Q,A=tr(QTA)

Q 0 = U r I r V r T = U r V r T \mathbf{Q}_0=\mathbf{U}_r\mathbf{I}_r\mathbf{V}_r^T=\mathbf{U}_r\mathbf{V}_r^T Q0=UrIrVrT=UrVrT
⟨ Q 0 , A ⟩ = tr ⁡ ( Q 0 T A ) = tr ⁡ ( V r U r T U r Σ r V r T ) = tr ⁡ ( V r Σ r V r T ) = tr ⁡ ( V r T V r Σ r ) = tr ⁡ ( Σ r ) = ∥ A ∥ ∗ \begin{aligned} \left\langle\mathbf{Q}_0,\mathbf{A}\right\rangle&=\operatorname{tr}\left(\mathbf{Q}_0^T\mathbf{A}\right)\\ &=\operatorname{tr}\left(\mathbf{V}_r\mathbf{U}_r^T\mathbf{U}_r\mathbf{\Sigma}_r\mathbf{V}_r^T\right)\\ &=\operatorname{tr}\left(\mathbf{V}_r\mathbf{\Sigma}_r\mathbf{V}_r^T\right)\\ &=\operatorname{tr}\left(\mathbf{V}_r^T\mathbf{V}_r\mathbf{\Sigma}_r\right)\\ &=\operatorname{tr}\left(\mathbf{\Sigma}_r\right)\\ &=\|\mathbf{A}\|_* \end{aligned} Q0,A=tr(Q0TA)=tr(VrUrTUrΣrVrT)=tr(VrΣrVrT)=tr(VrTVrΣr)=tr(Σr)=A
于是
sup ⁡ σ 1 ( Q ) ≤ 1 ⟨ Q , A ⟩ ≥ ∥ A ∥ ∗ \sup_{\sigma_1\left(\mathbf{Q}\right)\le 1}\left\langle\mathbf{Q},\mathbf{A}\right\rangle\ge\|\mathbf{A}\|_* σ1(Q)1supQ,AA

sup ⁡ σ 1 ( Q ) ≤ 1 ⟨ Q , A ⟩ = sup ⁡ σ 1 ( Q ) ≤ 1 tr ⁡ ( Q T A ) = sup ⁡ σ 1 ( Q ) ≤ 1 tr ⁡ ( Q T U Σ V T ) = sup ⁡ σ 1 ( Q ) ≤ 1 tr ⁡ ( V T Q T U Σ ) = sup ⁡ σ 1 ( Q ) ≤ 1 tr ⁡ ( ( U T Q V ) T Σ ) = sup ⁡ σ 1 ( Q ) ≤ 1 ∑ i = 1 min ⁡ { m , n } σ i u i T Q v i ≤ sup ⁡ σ 1 ( Q ) ≤ 1 ∑ i = 1 min ⁡ { m , n } σ i σ 1 ( Q ) ≤ ∑ i = 1 min ⁡ { m , n } σ i = ∥ A ∥ ∗ \begin{aligned} \sup_{\sigma_1\left(\mathbf{Q}\right)\le 1}\left\langle\mathbf{Q},\mathbf{A}\right\rangle&=\sup_{\sigma_1\left(\mathbf{Q}\right)\le 1}\operatorname{tr}\left(\mathbf{Q}^T\mathbf{A}\right)\\ &=\sup_{\sigma_1\left(\mathbf{Q}\right)\le 1}\operatorname{tr}\left(\mathbf{Q}^T\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\right)\\ &=\sup_{\sigma_1\left(\mathbf{Q}\right)\le 1}\operatorname{tr}\left(\mathbf{V}^T\mathbf{Q}^T\mathbf{U}\mathbf{\Sigma}\right)\\ &=\sup_{\sigma_1\left(\mathbf{Q}\right)\le 1}\operatorname{tr}\left(\left(\mathbf{U}^T\mathbf{Q}\mathbf{V}\right)^T\mathbf{\Sigma}\right)\\ &=\sup_{\sigma_1\left(\mathbf{Q}\right)\le 1}\sum_{i=1}^{\min\left\{m,n\right\}}\sigma_i\mathbf{u}_i^T\mathbf{Q}\mathbf{v}_i\\ &\le\sup_{\sigma_1\left(\mathbf{Q}\right)\le 1}\sum_{i=1}^{\min\left\{m,n\right\}}\sigma_i\sigma_1\left({\mathbf{Q}}\right)\\ &\le\sum_{i=1}^{\min\left\{m,n\right\}}\sigma_i\\ &=\|\mathbf{A}\|_{*} \end{aligned} σ1(Q)1supQ,A=σ1(Q)1suptr(QTA)=σ1(Q)1suptr(QTVT)=σ1(Q)1suptr(VTQT)=σ1(Q)1suptr((UTQV)TΣ)=σ1(Q)1supi=1min{m,n}σiuiTQviσ1(Q)1supi=1min{m,n}σiσ1(Q)i=1min{m,n}σi=A
于是
sup ⁡ σ 1 ( Q ) ≤ 1 ⟨ Q , A ⟩ = ∥ A ∥ ∗ \sup_{\sigma_1\left(\mathbf{Q}\right)\le 1}\left\langle\mathbf{Q},\mathbf{A}\right\rangle=\|\mathbf{A}\|_* σ1(Q)1supQ,A=A
所以
∥ A + B ∥ ∗ = sup ⁡ σ 1 ( Q ) ≤ 1 ⟨ Q , A + B ⟩ = sup ⁡ σ 1 ( Q ) ≤ 1 ( ⟨ Q , A ⟩ + ⟨ Q , B ⟩ ) ≤ sup ⁡ σ 1 ( Q ) ≤ 1 ⟨ Q , A ⟩ + sup ⁡ σ 1 ( Q ) ≤ 1 ⟨ Q , B ⟩ = ∥ A ∥ ∗ + ∥ B ∥ ∗ \begin{aligned} \|\mathbf{A}+\mathbf{B}\|_*&=\sup_{\sigma_1\left(\mathbf{Q}\right)\le 1}\left\langle\mathbf{Q},\mathbf{A}+\mathbf{B}\right\rangle\\ &=\sup_{\sigma_1\left(\mathbf{Q}\right)\le 1}\left(\left\langle\mathbf{Q},\mathbf{A}\right\rangle+\left\langle\mathbf{Q},\mathbf{B}\right\rangle\right)\\ &\le \sup_{\sigma_1\left(\mathbf{Q}\right)\le 1}\left\langle\mathbf{Q},\mathbf{A}\right\rangle+\sup_{\sigma_1\left(\mathbf{Q}\right)\le 1}\left\langle\mathbf{Q},\mathbf{B}\right\rangle\\ &=\|\mathbf{A}\|_*+\|\mathbf{B}\|_* \end{aligned} A+B=σ1(Q)1supQ,A+B=σ1(Q)1sup(Q,A+Q,B)σ1(Q)1supQ,A+σ1(Q)1supQ,B=A+B

参考
https://angms.science/doc/LA/KyFanNorm.pdf

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值