原文链接:http://blog.csdn.net/shanglianlm/article/details/46009387
为了求解问题
因为它是非凸的,我们求解一个它的近似算法
对于一个大的ττ值,它可以用下列等式接近
其中第一项为核范式(奇异值的和),第二项为Frobenius范式。
Singular Value Thresholding (SVT) 奇异值阈值
* 奇异值收缩(singular value shrinkage)*
首先我们考虑一个秩为rr的矩阵X∈Rn1xn2X∈Rn1xn2的奇异值分解如下:
其中 UU 和 VV 分别为 n1×rn1×r 和 n2×rn2×r 的正交矩阵,奇异值为ρiρi非负的。对于每个τ≥0τ≥0,我们有软阈值操作DτDτ:
其中t+t+表示的tt非负部分,即 t+=max(0,t)t+=max(0,t)。换句话说,这个软阈值操作仅仅应用于矩阵 XX 的奇异值上,使它们趋于零。这也是为什么我们将其成为奇异值收缩(singular value shrinkage)的原因。* Singular Value Thresholding (SVT) 奇异值阈值*
又因为奇异值收缩(singular value shrinkage)是核范式的近似操作(具体证明见[3]),因此上式可以转化为:
它的迭代方式为:
这个算法受到压缩感知中迭代算法的启发,在迭代过程中对矩阵进行SVD,然后将较小的奇异值设置为0,生成新的矩阵进行迭代。该算法运算速度快,对于高位低秩矩阵的恢复非常有效。
用拉格朗日乘子法解释
原问题为:
其拉格朗日函数为:
强对偶成立,且拉格朗日函数的鞍点是原函数与对偶问题的最优解,即
其迭代解为: