拉普拉斯矩阵

拉普拉斯算子

Δ f = f ( x i + 1 , y j ) + f ( x i − 1 , y j ) + f ( x i , y j + 1 ) + f ( x i , y j − 1 ) − 4 f ( x i , y j ) = ∑ ( k , l ) ∈ N ( i , j ) ( f ( x k , y l ) − f ( x i , y j ) ) \begin{aligned} \Delta f &= f\left(x_{i+1}, y_j\right) + f\left(x_{i-1},y_j\right) + f\left(x_i,y_{j+1}\right)+f\left(x_i,y_{j-1}\right) - 4f\left(x_i,y_j\right)\\ &=\sum\limits_{\left(k,l\right) \in N\left(i,j\right)}\left(f\left(x_k,y_l\right) - f\left(x_i,y_j\right)\right) \end{aligned} Δf=f(xi+1,yj)+f(xi1,yj)+f(xi,yj+1)+f(xi,yj1)4f(xi,yj)=(k,l)N(i,j)(f(xk,yl)f(xi,yj))
其中 N ( i , j ) N\left(i,j\right) N(i,j)表示 ( i , j ) \left(i,j\right) (i,j)相邻的节点,例如这里是四联通(上下左右)

拉普拉斯矩阵

前面的拉普拉斯算子是上下左右,而图的顶点的连接关系可以是任意的,下面将拉普拉斯算子推广到图。
如果将图的顶点处的值看作是函数值,则在顶点 i i i的拉普拉斯算子为
Δ f i = ∑ j ∈ N i ( f i − f j ) \Delta f_i = \sum_{j \in N_i}\left(f_i-f_j\right) Δfi=jNi(fifj)
这里的拉普拉斯算子和上面的拉普拉斯算子查了个负号

(下面针对无向图)

由于图的边可以带有权重,设 W \mathbf{W} W为邻接矩阵
Δ f i = ∑ j ∈ N i w i j ( f i − f j ) \Delta f_i = \sum_{j \in N_i}w_{ij}\left(f_i-f_j\right) Δfi=jNiwij(fifj)
V V V为顶点集合, n = ∣ V ∣ n = \left|V\right| n=V D \mathbf{D} D为加权度矩阵,即 d i j = { ∑ j = 1 n w i j , i = j 0 , o t h e r w i s e d_{ij} = \begin{cases} \sum_{j=1}^{n}w_{ij},& i = j\\ 0,&otherwise\\ \end{cases} dij={j=1nwij,0,i=jotherwise
如果 j ∉ N i j\notin N_i j/Ni w i j = 0 w_{ij} = 0 wij=0,于是
Δ f i = ∑ j ∈ V w i j ( f i − f j ) = ∑ j ∈ V w i j f i − ∑ j ∈ V w i j f j = d i i f i − w i f \Delta f_i = \sum_{j \in V}w_{ij}\left(f_i-f_j\right) = \sum_{j \in V}w_{ij}f_i - \sum_{j \in V}w_{ij}f_j = d_{ii} f_i - \mathbf{w}_i\mathbf{f} Δfi=jVwij(fifj)=jVwijfijVwijfj=diifiwif
其中 w I \mathbf{w}_I wI表示 W \mathbf{W} W的第 i i i行, f = ( f 1 f 2 ⋮ f n ) \mathbf{f} = \begin{pmatrix} f_1\\ f_2\\ \vdots\\ f_n\\ \end{pmatrix} f= f1f2fn

对于所有的点,有
Δ f = ( Δ f 1 ⋮ Δ f n ) = ( d 1 f 1 − w 1 f ⋮ d n f n − w n f ) = D f − W f = ( D − W ) f \Delta f = \begin{pmatrix} \Delta f_1\\ \vdots \\ \Delta f_n \end{pmatrix} = \begin{pmatrix} d_1 f_1 - \mathbf{w}_1 \mathbf{f}\\ \vdots \\ d_n f_n - \mathbf{w}_n \mathbf{f}\\ \end{pmatrix}=\mathbf{D}\mathbf{f} - \mathbf{W}\mathbf{f} = \left(\mathbf{D} - \mathbf{W} \right) \mathbf{f} Δf= Δf1Δfn = d1f1w1fdnfnwnf =DfWf=(DW)f
定义拉普拉斯矩阵为
L = D − W \mathbf{L} = \mathbf{D} - \mathbf{W} L=DW

性质

性质1

∀ f ∈ R n \forall \mathbf{f}\in\mathbb{R}^n fRn,有
f T L f = 1 2 ∑ i = 1 n ∑ j = 1 n w i j ( f i − f j ) 2 \mathbf{f}^T\mathbf{L}\mathbf{f}=\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}\left(f_i-f_j\right)^2 fTLf=21i=1nj=1nwij(fifj)2

证明:
f T L f = f T D f − f T W f = ∑ i = 1 n d i i f i 2 − ∑ i = 1 n ∑ j = 1 n f i f j w i j = 1 2 ( 2 ∑ i = 1 n d i i f i 2 − 2 ∑ i = 1 n ∑ j = 1 n f i f j w i j ) = 1 2 ( ∑ i = 1 n d i i f i 2 − 2 ∑ i = 1 n ∑ j = 1 n f i f j w i j + ∑ j = 1 n d j j f j 2 ) = 1 2 ( ∑ i = 1 n ∑ j = 1 n w i j f i 2 − 2 ∑ i = 1 n ∑ j = 1 n f i f j w i j + ∑ j = 1 n ∑ i = 1 n w j i f j 2 ) = 1 2 ( ∑ i = 1 n ∑ j = 1 n w i j f i 2 − 2 ∑ i = 1 n ∑ j = 1 n f i f j w i j + ∑ i = 1 n ∑ j = 1 n w j i f j 2 ) = 1 2 ( ∑ i = 1 n ∑ j = 1 n w i j f i 2 − 2 ∑ i = 1 n ∑ j = 1 n f i f j w i j + ∑ i = 1 n ∑ j = 1 n w i j f j 2 ) = 1 2 ∑ i = 1 n ∑ j = 1 n w i j ( f i − f j ) 2 \begin{aligned} \mathbf{f}^T\mathbf{L}\mathbf{f} &= \mathbf{f}^T\mathbf{D}\mathbf{f} - \mathbf{f}^T\mathbf{W} \mathbf{f}\\ &=\sum_{i=1}^{n}d_{ii} f_i^2 - \sum_{i=1}^{n}\sum_{j=1}^{n}f_i f_j w_{ij}\\ &=\frac{1}{2}\left(2\sum_{i=1}^{n}d_{ii} f_i^2 - 2\sum_{i=1}^{n}\sum_{j=1}^{n}f_i f_j w_{ij}\right)\\ &=\frac{1}{2}\left(\sum_{i=1}^{n}d_{ii} f_i^2 - 2\sum_{i=1}^{n}\sum_{j=1}^{n}f_i f_j w_{ij} + \sum_{j=1}^{n}d_{jj} f_j^2\right)\\ &=\frac{1}{2}\left(\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij} f_i^2 - 2\sum_{i=1}^{n}\sum_{j=1}^{n}f_i f_j w_{ij} + \sum_{j=1}^{n}\sum_{i=1}^{n}w_{ji} f_j^2\right)\\ &=\frac{1}{2}\left(\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij} f_i^2 - 2\sum_{i=1}^{n}\sum_{j=1}^{n}f_i f_j w_{ij} + \sum_{i=1}^{n}\sum_{j=1}^{n}w_{ji} f_j^2\right)\\ &=\frac{1}{2}\left(\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij} f_i^2 - 2\sum_{i=1}^{n}\sum_{j=1}^{n}f_i f_j w_{ij} + \sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij} f_j^2\right)\\ &=\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}\left(f_i-f_j\right)^2 \end{aligned} fTLf=fTDffTWf=i=1ndiifi2i=1nj=1nfifjwij=21(2i=1ndiifi22i=1nj=1nfifjwij)=21(i=1ndiifi22i=1nj=1nfifjwij+j=1ndjjfj2)=21(i=1nj=1nwijfi22i=1nj=1nfifjwij+j=1ni=1nwjifj2)=21(i=1nj=1nwijfi22i=1nj=1nfifjwij+i=1nj=1nwjifj2)=21(i=1nj=1nwijfi22i=1nj=1nfifjwij+i=1nj=1nwijfj2)=21i=1nj=1nwij(fifj)2

性质2

L ⪰ 0 \mathbf{L}\succeq 0 L0
由性质1,显然

性质3

最小特征值为0,对应的特征向量为 e \mathbf{e} e,即全1的向量

证明:
每一行加起来
∑ j = 1 n l i j = ∑ j = 1 n ( d i j − w i j ) = d i i − ∑ j = 1 n w i j = 0 \sum_{j=1}^{n} l_{ij} = \sum_{j=1}^{n}\left(d_{ij} - w_{ij}\right) = d_{ii}-\sum_{j=1}^{n}w_{ij} = 0 j=1nlij=j=1n(dijwij)=diij=1nwij=0
于是 L e = 0 e \mathbf{L}\mathbf{e} = 0\mathbf{e} Le=0e

性质4

G \mathbf{G} G是一个非负权重的无向图,则其拉普拉斯矩阵 L \mathbf{L} L的特征值0的重数 k k k等于图的连通分量的个数

证明:
k = 1 k=1 k=1时,即连通图

f T L f = 1 2 ∑ i = 1 n ∑ j = 1 n w i j ( f i − f j ) 2 = 1 2 ∑ ( i , j ) w i j ( f i − f j ) 2 = 0 \mathbf{f}^T\mathbf{L}\mathbf{f}=\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}\left(f_i-f_j\right)^2=\frac{1}{2}\sum_{\left(i,j\right)}w_{ij}\left(f_i-f_j\right)^2=0 fTLf=21i=1nj=1nwij(fifj)2=21(i,j)wij(fifj)2=0
对于 w i j > 0 w_{ij}>0 wij>0,有 f i = f j f_i = f_j fi=fj
由于是连通图,最后 f 1 = f 2 = ⋯ = f n f_1 = f_2 = \cdots = f_n f1=f2==fn(有点像并查集)
也就是说当且仅当 f = t e ( t ≠ 0 ) \mathbf{f} = t\mathbf{e}\left(t\neq 0\right) f=te(t=0)时, f T L f = 0 \mathbf{f}^T\mathbf{L}\mathbf{f} = 0 fTLf=0

因为特征值 0 0 0对应的特征向量只有 t e t\mathbf{e} te,所以重数为1

假设 k − 1 k-1 k1的时候成立
k k k
不妨假设顶点按照其所属的联通分量排序
则对应的拉普拉斯矩阵是一个分块矩阵,
L = ( L 1 L 2 ⋱ L k ) \mathbf{L} = \begin{pmatrix} \mathbf{L}_1&&& \\ &\mathbf{L}_2&&\\ &&\ddots&\\ &&&\mathbf{L}_k \end{pmatrix} L= L1L2Lk
f = ( 0 ⋮ 0 1 ⋮ 1 0 ⋮ 0 ) \mathbf{f} = \begin{pmatrix} 0\\ \vdots\\ 0\\ 1\\ \vdots\\ 1\\ 0\\ \vdots\\ 0\\ \end{pmatrix} f= 001100 ,每一个分块矩阵对应的分量为1,剩下的为0
f T L f = 0 \mathbf{f}^T\mathbf{L}\mathbf{f} = 0 fTLf=0
这样的 f \mathbf{f} f k k k

归一化拉普拉斯矩阵

对称归一化

盲猜针对无向图,并且没有孤立点和自环,这样才能保证 d i i ≠ 0 , w i i = 0 , w i j = w j i d_{ii} \neq 0,w_{ii} = 0,w_{ij} = w_{ji} dii=0,wii=0,wij=wji

定义为
L s y m = D − 1 2 L D − 1 2 = I − D − 1 2 W D − 1 2 \mathbf{L}_{sym} = \mathbf{D}^{-\frac{1}{2}}\mathbf{L}\mathbf{D}^{-\frac{1}{2}} = \mathbf{I}-\mathbf{D}^{-\frac{1}{2}}\mathbf{W}\mathbf{D}^{-\frac{1}{2}} Lsym=D21LD21=ID21WD21
显然这是一个对称, [ l s y m ] i j = { 1 i = j − w i j d i i d j j , w i j ≠ 0 0 , o t h e r w i s e \left[l_{sym}\right]_{ij} = \begin{cases} 1&i = j\\ -\frac{w_{ij}}{\sqrt{d_{ii}d_{jj}}},&w_{ij}\neq 0\\ 0,&otherwise\\ \end{cases} [lsym]ij= 1diidjj wij,0,i=jwij=0otherwise

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值