拉普拉斯算子
Δ
f
=
f
(
x
i
+
1
,
y
j
)
+
f
(
x
i
−
1
,
y
j
)
+
f
(
x
i
,
y
j
+
1
)
+
f
(
x
i
,
y
j
−
1
)
−
4
f
(
x
i
,
y
j
)
=
∑
(
k
,
l
)
∈
N
(
i
,
j
)
(
f
(
x
k
,
y
l
)
−
f
(
x
i
,
y
j
)
)
\begin{aligned} \Delta f &= f\left(x_{i+1}, y_j\right) + f\left(x_{i-1},y_j\right) + f\left(x_i,y_{j+1}\right)+f\left(x_i,y_{j-1}\right) - 4f\left(x_i,y_j\right)\\ &=\sum\limits_{\left(k,l\right) \in N\left(i,j\right)}\left(f\left(x_k,y_l\right) - f\left(x_i,y_j\right)\right) \end{aligned}
Δf=f(xi+1,yj)+f(xi−1,yj)+f(xi,yj+1)+f(xi,yj−1)−4f(xi,yj)=(k,l)∈N(i,j)∑(f(xk,yl)−f(xi,yj))
其中
N
(
i
,
j
)
N\left(i,j\right)
N(i,j)表示
(
i
,
j
)
\left(i,j\right)
(i,j)相邻的节点,例如这里是四联通(上下左右)
拉普拉斯矩阵
前面的拉普拉斯算子是上下左右,而图的顶点的连接关系可以是任意的,下面将拉普拉斯算子推广到图。
如果将图的顶点处的值看作是函数值,则在顶点
i
i
i的拉普拉斯算子为
Δ
f
i
=
∑
j
∈
N
i
(
f
i
−
f
j
)
\Delta f_i = \sum_{j \in N_i}\left(f_i-f_j\right)
Δfi=j∈Ni∑(fi−fj)
这里的拉普拉斯算子和上面的拉普拉斯算子查了个负号
(下面针对无向图)
由于图的边可以带有权重,设
W
\mathbf{W}
W为邻接矩阵
Δ
f
i
=
∑
j
∈
N
i
w
i
j
(
f
i
−
f
j
)
\Delta f_i = \sum_{j \in N_i}w_{ij}\left(f_i-f_j\right)
Δfi=j∈Ni∑wij(fi−fj)
设
V
V
V为顶点集合,
n
=
∣
V
∣
n = \left|V\right|
n=∣V∣,
D
\mathbf{D}
D为加权度矩阵,即
d
i
j
=
{
∑
j
=
1
n
w
i
j
,
i
=
j
0
,
o
t
h
e
r
w
i
s
e
d_{ij} = \begin{cases} \sum_{j=1}^{n}w_{ij},& i = j\\ 0,&otherwise\\ \end{cases}
dij={∑j=1nwij,0,i=jotherwise
如果
j
∉
N
i
j\notin N_i
j∈/Ni则
w
i
j
=
0
w_{ij} = 0
wij=0,于是
Δ
f
i
=
∑
j
∈
V
w
i
j
(
f
i
−
f
j
)
=
∑
j
∈
V
w
i
j
f
i
−
∑
j
∈
V
w
i
j
f
j
=
d
i
i
f
i
−
w
i
f
\Delta f_i = \sum_{j \in V}w_{ij}\left(f_i-f_j\right) = \sum_{j \in V}w_{ij}f_i - \sum_{j \in V}w_{ij}f_j = d_{ii} f_i - \mathbf{w}_i\mathbf{f}
Δfi=j∈V∑wij(fi−fj)=j∈V∑wijfi−j∈V∑wijfj=diifi−wif
其中
w
I
\mathbf{w}_I
wI表示
W
\mathbf{W}
W的第
i
i
i行,
f
=
(
f
1
f
2
⋮
f
n
)
\mathbf{f} = \begin{pmatrix} f_1\\ f_2\\ \vdots\\ f_n\\ \end{pmatrix}
f=
f1f2⋮fn
对于所有的点,有
Δ
f
=
(
Δ
f
1
⋮
Δ
f
n
)
=
(
d
1
f
1
−
w
1
f
⋮
d
n
f
n
−
w
n
f
)
=
D
f
−
W
f
=
(
D
−
W
)
f
\Delta f = \begin{pmatrix} \Delta f_1\\ \vdots \\ \Delta f_n \end{pmatrix} = \begin{pmatrix} d_1 f_1 - \mathbf{w}_1 \mathbf{f}\\ \vdots \\ d_n f_n - \mathbf{w}_n \mathbf{f}\\ \end{pmatrix}=\mathbf{D}\mathbf{f} - \mathbf{W}\mathbf{f} = \left(\mathbf{D} - \mathbf{W} \right) \mathbf{f}
Δf=
Δf1⋮Δfn
=
d1f1−w1f⋮dnfn−wnf
=Df−Wf=(D−W)f
定义拉普拉斯矩阵为
L
=
D
−
W
\mathbf{L} = \mathbf{D} - \mathbf{W}
L=D−W
性质
性质1
∀
f
∈
R
n
\forall \mathbf{f}\in\mathbb{R}^n
∀f∈Rn,有
f
T
L
f
=
1
2
∑
i
=
1
n
∑
j
=
1
n
w
i
j
(
f
i
−
f
j
)
2
\mathbf{f}^T\mathbf{L}\mathbf{f}=\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}\left(f_i-f_j\right)^2
fTLf=21i=1∑nj=1∑nwij(fi−fj)2
证明:
f
T
L
f
=
f
T
D
f
−
f
T
W
f
=
∑
i
=
1
n
d
i
i
f
i
2
−
∑
i
=
1
n
∑
j
=
1
n
f
i
f
j
w
i
j
=
1
2
(
2
∑
i
=
1
n
d
i
i
f
i
2
−
2
∑
i
=
1
n
∑
j
=
1
n
f
i
f
j
w
i
j
)
=
1
2
(
∑
i
=
1
n
d
i
i
f
i
2
−
2
∑
i
=
1
n
∑
j
=
1
n
f
i
f
j
w
i
j
+
∑
j
=
1
n
d
j
j
f
j
2
)
=
1
2
(
∑
i
=
1
n
∑
j
=
1
n
w
i
j
f
i
2
−
2
∑
i
=
1
n
∑
j
=
1
n
f
i
f
j
w
i
j
+
∑
j
=
1
n
∑
i
=
1
n
w
j
i
f
j
2
)
=
1
2
(
∑
i
=
1
n
∑
j
=
1
n
w
i
j
f
i
2
−
2
∑
i
=
1
n
∑
j
=
1
n
f
i
f
j
w
i
j
+
∑
i
=
1
n
∑
j
=
1
n
w
j
i
f
j
2
)
=
1
2
(
∑
i
=
1
n
∑
j
=
1
n
w
i
j
f
i
2
−
2
∑
i
=
1
n
∑
j
=
1
n
f
i
f
j
w
i
j
+
∑
i
=
1
n
∑
j
=
1
n
w
i
j
f
j
2
)
=
1
2
∑
i
=
1
n
∑
j
=
1
n
w
i
j
(
f
i
−
f
j
)
2
\begin{aligned} \mathbf{f}^T\mathbf{L}\mathbf{f} &= \mathbf{f}^T\mathbf{D}\mathbf{f} - \mathbf{f}^T\mathbf{W} \mathbf{f}\\ &=\sum_{i=1}^{n}d_{ii} f_i^2 - \sum_{i=1}^{n}\sum_{j=1}^{n}f_i f_j w_{ij}\\ &=\frac{1}{2}\left(2\sum_{i=1}^{n}d_{ii} f_i^2 - 2\sum_{i=1}^{n}\sum_{j=1}^{n}f_i f_j w_{ij}\right)\\ &=\frac{1}{2}\left(\sum_{i=1}^{n}d_{ii} f_i^2 - 2\sum_{i=1}^{n}\sum_{j=1}^{n}f_i f_j w_{ij} + \sum_{j=1}^{n}d_{jj} f_j^2\right)\\ &=\frac{1}{2}\left(\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij} f_i^2 - 2\sum_{i=1}^{n}\sum_{j=1}^{n}f_i f_j w_{ij} + \sum_{j=1}^{n}\sum_{i=1}^{n}w_{ji} f_j^2\right)\\ &=\frac{1}{2}\left(\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij} f_i^2 - 2\sum_{i=1}^{n}\sum_{j=1}^{n}f_i f_j w_{ij} + \sum_{i=1}^{n}\sum_{j=1}^{n}w_{ji} f_j^2\right)\\ &=\frac{1}{2}\left(\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij} f_i^2 - 2\sum_{i=1}^{n}\sum_{j=1}^{n}f_i f_j w_{ij} + \sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij} f_j^2\right)\\ &=\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}\left(f_i-f_j\right)^2 \end{aligned}
fTLf=fTDf−fTWf=i=1∑ndiifi2−i=1∑nj=1∑nfifjwij=21(2i=1∑ndiifi2−2i=1∑nj=1∑nfifjwij)=21(i=1∑ndiifi2−2i=1∑nj=1∑nfifjwij+j=1∑ndjjfj2)=21(i=1∑nj=1∑nwijfi2−2i=1∑nj=1∑nfifjwij+j=1∑ni=1∑nwjifj2)=21(i=1∑nj=1∑nwijfi2−2i=1∑nj=1∑nfifjwij+i=1∑nj=1∑nwjifj2)=21(i=1∑nj=1∑nwijfi2−2i=1∑nj=1∑nfifjwij+i=1∑nj=1∑nwijfj2)=21i=1∑nj=1∑nwij(fi−fj)2
性质2
L
⪰
0
\mathbf{L}\succeq 0
L⪰0
由性质1,显然
性质3
最小特征值为0,对应的特征向量为 e \mathbf{e} e,即全1的向量
证明:
每一行加起来
∑
j
=
1
n
l
i
j
=
∑
j
=
1
n
(
d
i
j
−
w
i
j
)
=
d
i
i
−
∑
j
=
1
n
w
i
j
=
0
\sum_{j=1}^{n} l_{ij} = \sum_{j=1}^{n}\left(d_{ij} - w_{ij}\right) = d_{ii}-\sum_{j=1}^{n}w_{ij} = 0
∑j=1nlij=∑j=1n(dij−wij)=dii−∑j=1nwij=0
于是
L
e
=
0
e
\mathbf{L}\mathbf{e} = 0\mathbf{e}
Le=0e
性质4
设 G \mathbf{G} G是一个非负权重的无向图,则其拉普拉斯矩阵 L \mathbf{L} L的特征值0的重数 k k k等于图的连通分量的个数
证明:
当
k
=
1
k=1
k=1时,即连通图
f
T
L
f
=
1
2
∑
i
=
1
n
∑
j
=
1
n
w
i
j
(
f
i
−
f
j
)
2
=
1
2
∑
(
i
,
j
)
w
i
j
(
f
i
−
f
j
)
2
=
0
\mathbf{f}^T\mathbf{L}\mathbf{f}=\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}\left(f_i-f_j\right)^2=\frac{1}{2}\sum_{\left(i,j\right)}w_{ij}\left(f_i-f_j\right)^2=0
fTLf=21i=1∑nj=1∑nwij(fi−fj)2=21(i,j)∑wij(fi−fj)2=0
对于
w
i
j
>
0
w_{ij}>0
wij>0,有
f
i
=
f
j
f_i = f_j
fi=fj
由于是连通图,最后
f
1
=
f
2
=
⋯
=
f
n
f_1 = f_2 = \cdots = f_n
f1=f2=⋯=fn(有点像并查集)
也就是说当且仅当
f
=
t
e
(
t
≠
0
)
\mathbf{f} = t\mathbf{e}\left(t\neq 0\right)
f=te(t=0)时,
f
T
L
f
=
0
\mathbf{f}^T\mathbf{L}\mathbf{f} = 0
fTLf=0
因为特征值 0 0 0对应的特征向量只有 t e t\mathbf{e} te,所以重数为1
假设
k
−
1
k-1
k−1的时候成立
k
k
k时
不妨假设顶点按照其所属的联通分量排序
则对应的拉普拉斯矩阵是一个分块矩阵,
L
=
(
L
1
L
2
⋱
L
k
)
\mathbf{L} = \begin{pmatrix} \mathbf{L}_1&&& \\ &\mathbf{L}_2&&\\ &&\ddots&\\ &&&\mathbf{L}_k \end{pmatrix}
L=
L1L2⋱Lk
令
f
=
(
0
⋮
0
1
⋮
1
0
⋮
0
)
\mathbf{f} = \begin{pmatrix} 0\\ \vdots\\ 0\\ 1\\ \vdots\\ 1\\ 0\\ \vdots\\ 0\\ \end{pmatrix}
f=
0⋮01⋮10⋮0
,每一个分块矩阵对应的分量为1,剩下的为0
有
f
T
L
f
=
0
\mathbf{f}^T\mathbf{L}\mathbf{f} = 0
fTLf=0
这样的
f
\mathbf{f}
f有
k
k
k个
归一化拉普拉斯矩阵
对称归一化
盲猜针对无向图,并且没有孤立点和自环,这样才能保证 d i i ≠ 0 , w i i = 0 , w i j = w j i d_{ii} \neq 0,w_{ii} = 0,w_{ij} = w_{ji} dii=0,wii=0,wij=wji
定义为
L
s
y
m
=
D
−
1
2
L
D
−
1
2
=
I
−
D
−
1
2
W
D
−
1
2
\mathbf{L}_{sym} = \mathbf{D}^{-\frac{1}{2}}\mathbf{L}\mathbf{D}^{-\frac{1}{2}} = \mathbf{I}-\mathbf{D}^{-\frac{1}{2}}\mathbf{W}\mathbf{D}^{-\frac{1}{2}}
Lsym=D−21LD−21=I−D−21WD−21
显然这是一个对称,
[
l
s
y
m
]
i
j
=
{
1
i
=
j
−
w
i
j
d
i
i
d
j
j
,
w
i
j
≠
0
0
,
o
t
h
e
r
w
i
s
e
\left[l_{sym}\right]_{ij} = \begin{cases} 1&i = j\\ -\frac{w_{ij}}{\sqrt{d_{ii}d_{jj}}},&w_{ij}\neq 0\\ 0,&otherwise\\ \end{cases}
[lsym]ij=⎩
⎨
⎧1−diidjjwij,0,i=jwij=0otherwise