矩阵行列式引理

Matrix determinant lemma

A ∈ R n × n \mathbf{A}\in\mathbb{R}^{n\times n} ARn×n可逆, u , v ∈ R n \mathbf{u},\mathbf{v}\in\mathbb{R}^n u,vRn,则
∣ A + u v T ∣ = ( 1 + v T A − 1 u ) ∣ A ∣ \left|\mathbf{A}+\mathbf{u}\mathbf{v}^T\right|=\left(1+\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\right)\left|\mathbf{A}\right| A+uvT=(1+vTA1u)A
证明:
A = I \mathbf{A}=\mathbf{I} A=I
( I 0 v T 1 ) ( I + u v T u 0 1 ) ( I 0 − v T 1 ) = ( I u 0 1 + v T u ) \left(\begin{array}{cc} \mathbf{I} & 0 \\ \mathbf{v}^T & 1 \end{array}\right)\left(\begin{array}{cc} \mathbf{I}+\mathbf{u v}^T & \mathbf{u} \\ 0 & 1 \end{array}\right)\left(\begin{array}{cc} \mathbf{I} & 0 \\ -\mathbf{v}^T & 1 \end{array}\right)=\left(\begin{array}{cc} \mathbf{I} & \mathbf{u} \\ 0 & 1+\mathbf{v}^T \mathbf{u} \end{array}\right) (IvT01)(I+uvT0u1)(IvT01)=(I0u1+vTu)
于是
∣ I + u v T ∣ = ∣ 1 + v T u ∣ \left|\mathbf{I}+\mathbf{u}\mathbf{v}^T\right|=\left|1+\mathbf{v}^T\mathbf{u}\right| I+uvT=1+vTu

∣ A + u v T ∣ = ∣ A ∣ ∣ I + A − 1 u v T ∣ = ∣ A ∣ ∣ 1 + v T A − 1 u ∣ = ( 1 + v T A − 1 u ) ∣ A ∣ \begin{aligned} \left|\mathbf{A}+\mathbf{u}\mathbf{v}^T\right|&=\left|\mathbf{A}\right|\left|\mathbf{I}+\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\right|\\ &=\left|\mathbf{A}\right|\left|1+\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\right|\\ &=\left(1+\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\right)\left|\mathbf{A}\right| \end{aligned} A+uvT=AI+A1uvT=A1+vTA1u=(1+vTA1u)A

推广1

A ∈ R n × n \mathbf{A}\in\mathbb{R}^{n\times n} ARn×n可逆, U , V ∈ R n × m \mathbf{U},\mathbf{V}\in\mathbb{R}^{n\times m} U,VRn×m,

∣ A + U V T ∣ = ∣ I + V T A − 1 U ∣ ∣ A ∣ \left|\mathbf{A}+\mathbf{U}\mathbf{V}^T\right|=\left|\mathbf{I}+\mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}\right|\left|\mathbf{A}\right| A+UVT=I+VTA1UA
A = I \mathbf{A}=\mathbf{I} A=I
( I 0 V T I ) ( I + U V T U 0 I ) ( I 0 − V T I ) = ( I U 0 I + V T U ) \left(\begin{array}{cc} \mathbf{I} & 0 \\ \mathbf{V}^T & \mathbf{I} \end{array}\right)\left(\begin{array}{cc} \mathbf{I}+\mathbf{U V}^T & \mathbf{U} \\ 0 & \mathbf{I} \end{array}\right)\left(\begin{array}{cc} \mathbf{I} & 0 \\ -\mathbf{V}^T & \mathbf{I} \end{array}\right)=\left(\begin{array}{cc} \mathbf{I} & \mathbf{U} \\ 0 & \mathbf{I}+\mathbf{V}^T \mathbf{U} \end{array}\right) (IVT0I)(I+UVT0UI)(IVT0I)=(I0UI+VTU)
于是
∣ I + U V T ∣ = ∣ I + V T U ∣ \left|\mathbf{I}+\mathbf{U}\mathbf{V}^T\right|=\left|\mathbf{I}+\mathbf{V}^T\mathbf{U}\right| I+UVT=I+VTU
∣ A + U V T ∣ = ∣ A ∣ ∣ I + A − 1 U V T ∣ = ∣ A ∣ ∣ I + V T A − 1 U ∣ \begin{aligned} \left|\mathbf{A}+\mathbf{U}\mathbf{V}^T\right|&=\left|\mathbf{A}\right|\left|\mathbf{I}+\mathbf{A}^{-1}\mathbf{U}\mathbf{V}^T\right|\\ &=\left|\mathbf{A}\right|\left|\mathbf{I}+\mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}\right| \end{aligned} A+UVT=AI+A1UVT=AI+VTA1U

推广2

A ∈ R n × n , W ∈ R m × m \mathbf{A}\in\mathbb{R}^{n\times n},\mathbf{W}\in\mathbb{R}^{m\times m} ARn×n,WRm×m可逆, U , V ∈ R n × m \mathbf{U},\mathbf{V}\in\mathbb{R}^{n\times m} U,VRn×m,

∣ A + U W V T ∣ = ∣ W − 1 + V T A − 1 U ∣ ∣ W ∣ ∣ A ∣ \left|\mathbf{A}+\mathbf{U}\mathbf{W}\mathbf{V}^T\right|=\left|\mathbf{W}^{-1}+\mathbf{V}^{T}\mathbf{A}^{-1}\mathbf{U}\right|\left|\mathbf{W}\right|\left|\mathbf{A}\right| A+UWVT=W1+VTA1UWA

证明:
∣ A + U W V T ∣ = ∣ A ∣ ∣ I + A − 1 U W V T ∣ = ∣ A ∣ ∣ I + W V T A − 1 U ∣ = ∣ A ∣ ∣ W ∣ ∣ W − 1 + V T A − 1 U ∣ \begin{aligned} &\left|\mathbf{A}+\mathbf{U}\mathbf{W}\mathbf{V}^T\right|\\ =&\left|\mathbf{A}\right|\left|\mathbf{I}+\mathbf{A}^{-1}\mathbf{U}\mathbf{W}\mathbf{V}^T\right|\\ =&\left|\mathbf{A}\right|\left|\mathbf{I}+\mathbf{W}\mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}\right|\\ =&\left|\mathbf{A}\right|\left|\mathbf{W}\right|\left|\mathbf{W}^{-1}+\mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}\right|\\ \end{aligned} ===A+UWVTAI+A1UWVTAI+WVTA1UAWW1+VTA1U

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值