逆函数
给定关系 R ⊆ X × Y R\subseteq X\times Y R⊆X×Y,颠倒 R R R的所有有序偶可以得到 R R R的逆关系 R ~ ⊆ Y × X \tilde{R}\subseteq Y\times X R~⊆Y×X
但是对于函数 f : X → Y f:X\to Y f:X→Y而言,其逆关系 f ~ \tilde{f} f~可能不是 Y Y Y到 X X X的函数,
那么在什么条件下 f f f的逆关系 f ~ \tilde{f} f~能够称为函数呢?
定理1:设 f : X → Y f:X\to Y f:X→Y是双射,则 f f f的逆关系 f ~ \tilde{f} f~是从 Y Y Y到 X X X的函数
证明:设函数
f
=
{
<
x
,
y
>
∣
x
∈
X
∧
y
∈
Y
∧
f
(
x
)
=
y
}
f=\left\{\left<x,y\right> | x\in X \wedge y \in Y \wedge f\left(x\right)=y \right\}
f={⟨x,y⟩∣x∈X∧y∈Y∧f(x)=y},则
f
~
=
{
<
y
,
x
>
∣
<
x
,
y
>
∈
f
}
\tilde{f}=\left\{\left<y,x\right>|\left<x,y\right>\in f\right\}
f~={⟨y,x⟩∣⟨x,y⟩∈f}
对于任意的
y
∈
Y
y\in Y
y∈Y,由于
f
f
f是满射,所以有
x
∈
X
x\in X
x∈X,使得
<
x
,
y
>
∈
f
\left<x,y\right>\in f
⟨x,y⟩∈f,即有
<
y
,
x
>
∈
f
~
\left<y,x\right>\in \tilde{f}
⟨y,x⟩∈f~,亦即
d
o
m
(
f
~
)
=
Y
\mathop{dom}\left(\tilde{f}\right)=Y
dom(f~)=Y
对于任意的
y
∈
Y
y\in Y
y∈Y,若有
x
1
,
x
2
,
∈
X
x_1,x_2,\in X
x1,x2,∈X,使得
<
y
,
x
1
>
∈
f
~
,
<
y
,
x
2
>
∈
f
~
\left<y,x_1\right>\in \tilde{f}, \left<y,x_2\right>\in\tilde{f}
⟨y,x1⟩∈f~,⟨y,x2⟩∈f~,则
<
x
1
,
y
>
∈
f
,
<
x
2
,
y
>
∈
f
\left<x_1, y\right>\in f,\left<x_2,y\right>\in f
⟨x1,y⟩∈f,⟨x2,y⟩∈f,由于
f
f
f单射,所以
x
1
=
x
2
x_1=x_2
x1=x2
由此可见,对于任意的 y ∈ Y y\in Y y∈Y,存在唯一的 x ∈ X x\in X x∈X,使得 < y , x > ∈ f ~ \left<y,x\right>\in \tilde{f} ⟨y,x⟩∈f~,故 f ~ \tilde{f} f~是函数
由于双射函数
f
:
X
→
Y
f:X\to Y
f:X→Y的逆关系也是函数,我们称这个哈数为
f
f
f的逆函数
记为
f
−
1
:
Y
→
X
f^{-1}:Y\to X
f−1:Y→X
定理2:设
f
f
f是从
X
X
X到
Y
Y
Y的双射,
g
g
g是从
Y
Y
Y到
X
X
X的函数,则
f
−
1
=
g
f^{-1}=g
f−1=g当且仅当
g
∘
f
=
1
X
g\circ f=1_X
g∘f=1X且
f
∘
g
=
1
Y
f\circ g=1_Y
f∘g=1Y
证明:
必要性:若
f
−
1
=
g
f^{-1}=g
f−1=g,则对任意的
x
∈
X
x\in X
x∈X,由
<
x
,
f
(
x
)
>
∈
f
\left<x,f\left(x\right)\right>\in f
⟨x,f(x)⟩∈f可得
<
f
(
x
)
,
x
>
∈
f
−
1
\left<f\left(x\right),x\right>\in f^{-1}
⟨f(x),x⟩∈f−1
即
<
f
(
x
)
,
x
>
∈
g
\left<f\left(x\right),x\right>\in g
⟨f(x),x⟩∈g,所以
g
(
f
(
x
)
)
=
x
g\left(f\left(x\right)\right) = x
g(f(x))=x,即
g
∘
f
(
x
)
=
1
X
(
x
)
g \circ f\left(x\right) = 1_X\left(x\right)
g∘f(x)=1X(x)
因此
g
∘
f
=
1
X
g\circ f=1_X
g∘f=1X,同理可证
f
∘
g
=
1
Y
f\circ g=1_Y
f∘g=1Y
充分性:先证
f
−
1
⊆
g
f^{-1}\subseteq g
f−1⊆g
对于任意的
<
y
,
x
>
∈
f
−
1
\left<y,x\right>\in f^{-1}
⟨y,x⟩∈f−1,有
<
x
,
y
>
∈
f
\left<x,y\right> \in f
⟨x,y⟩∈f,即
y
=
f
(
x
)
y=f\left(x\right)
y=f(x),因为
g
∘
f
=
1
X
g\circ f=1_X
g∘f=1X,所以有
g
(
y
)
=
g
(
f
(
x
)
)
=
g
∘
f
(
x
)
=
1
X
(
x
)
=
x
g\left(y\right)=g\left(f\left(x\right)\right)=g\circ f\left(x\right)=1_X\left(x\right)=x
g(y)=g(f(x))=g∘f(x)=1X(x)=x
因此
<
y
,
x
>
∈
g
\left<y,x\right> \in g
⟨y,x⟩∈g,从而
f
−
1
⊆
g
f^{-1}\subseteq g
f−1⊆g
再证
g
⊆
f
−
1
g\subseteq f^{-1}
g⊆f−1,对任意的
<
y
,
x
>
∈
g
\left<y,x\right>\in g
⟨y,x⟩∈g,即
x
=
g
(
y
)
x=g\left(y\right)
x=g(y),因
f
∘
g
=
1
Y
f\circ g=1_Y
f∘g=1Y,所以有
f
(
x
)
=
f
(
g
(
y
)
)
=
f
∘
g
(
y
)
=
1
Y
(
y
)
=
y
f\left(x\right)=f\left(g\left(y\right)\right) = f\circ g\left(y\right)=1_Y\left(y\right) = y
f(x)=f(g(y))=f∘g(y)=1Y(y)=y
因此
<
x
,
y
>
∈
f
\left<x,y\right>\in f
⟨x,y⟩∈f,即有
<
y
,
x
>
∈
f
−
1
\left<y,x\right>\in f^{-1}
⟨y,x⟩∈f−1,从而
g
⊆
f
−
1
g\subseteq f^{-1}
g⊆f−1
由 f − 1 ⊆ g f^{-1} \subseteq g f−1⊆g和 g ⊆ f − 1 g\subseteq f^{-1} g⊆f−1,于是 f − 1 = g f^{-1}=g f−1=g
由这个定理,可以等价地给出逆函数的另一定义
定义:设 f : X → Y f:X\to Y f:X→Y,若有 g : Y → X g:Y\to X g:Y→X使得 g ∘ f = 1 X g\circ f=1_X g∘f=1X和 f ∘ g = 1 Y f\circ g=1_Y f∘g=1Y成立,则称 g g g是 f f f的逆函数,并称 f f f是可逆的
定义:设
f
:
X
→
Y
f:X\to Y
f:X→Y
(1)若有
g
:
Y
→
X
g:Y\to X
g:Y→X,使得
g
∘
f
=
1
X
g\circ f=1_X
g∘f=1X成立,则称
g
g
g是
f
f
f的左逆函数,并称
f
f
f是左可逆的
(2)若有
g
:
Y
→
X
g:Y\to X
g:Y→X,使得
f
∘
g
=
1
Y
f\circ g=1_Y
f∘g=1Y成立,则称
g
g
g是
f
f
f的右逆函数,并称
f
f
f是右可逆的
定理3:设
f
:
X
→
Y
,
X
≠
∅
f:X\to Y, X\neq \empty
f:X→Y,X=∅,则
(1)
f
f
f是左可逆的当且仅当
f
f
f是单射
(2)
f
f
f是右可逆的当且仅当
f
f
f是满射
(3)
f
f
f是可逆的当且仅当
f
f
f是双射,或当且仅当
f
f
f既是左可逆的,又是右可逆的
证明:
(1)必要性:若
f
f
f是左可逆的,则有
g
:
Y
→
X
g:Y\to X
g:Y→X,使得
g
∘
f
=
1
X
g\circ f=1_X
g∘f=1X
对任意的
x
1
,
x
2
∈
x
x_1,x_2\in x
x1,x2∈x,若
f
(
x
1
)
=
f
(
x
2
)
f\left(x_1\right)=f\left(x_2\right)
f(x1)=f(x2),则
x
1
=
1
X
(
x
1
)
=
g
∘
f
(
x
1
)
=
g
(
f
(
x
1
)
)
=
g
(
f
(
x
2
)
)
=
g
∘
f
(
x
2
)
=
1
X
(
x
2
)
=
x
2
\begin{aligned} x_1 &=1_X\left(x_1\right) = g\circ f\left(x_1\right) = g\left(f\left(x_1\right)\right)=g\left(f\left(x_2\right)\right)\\ &=g\circ f\left(x_2\right)=1_X\left(x_2\right)=x_2 \end{aligned}
x1=1X(x1)=g∘f(x1)=g(f(x1))=g(f(x2))=g∘f(x2)=1X(x2)=x2
充分性:若
f
f
f是单射,则因
X
≠
∅
X\neq \empty
X=∅,任取
x
0
∈
X
x_0 \in X
x0∈X,构造
g
g
g如下:
g
:
Y
→
X
g
(
y
)
=
{
x
,
∃
x
∈
X
,
y
=
f
(
x
)
x
0
,
o
t
h
e
r
w
i
s
e
g:Y\to X\\ g\left(y\right) = \begin{cases} x, &\exists x\in X, y=f\left(x\right)\\ x_0,&otherwise \end{cases}
g:Y→Xg(y)={x,x0,∃x∈X,y=f(x)otherwise
则
g
g
g是函数,这是因为任意的
y
∈
Y
y\in Y
y∈Y
1.若
y
∈
f
(
X
)
y\in f\left(X\right)
y∈f(X),则由于
f
f
f是单射,所以存在唯一的
x
∈
X
x\in X
x∈X,使得
<
y
,
x
>
∈
g
\left<y,x\right>\in g
⟨y,x⟩∈g
2.若
y
∉
f
(
X
)
y\notin f\left(X\right)
y∈/f(X),则有唯一的
x
0
∈
X
x_0\in X
x0∈X,使得
<
y
,
x
0
>
∈
g
\left<y,x_0\right>\in g
⟨y,x0⟩∈g
并且对于任意的
x
∈
X
x\in X
x∈X
g
∘
f
(
x
)
=
g
(
f
(
x
)
)
=
x
=
1
X
(
x
)
g\circ f\left(x\right) = g\left(f\left(x\right)\right) = x = 1_X\left(x\right)
g∘f(x)=g(f(x))=x=1X(x)
即
g
∘
f
=
1
X
g\circ f=1_X
g∘f=1X,故
f
f
f是左可逆的
(2)
必要性:若
f
f
f是右可逆的,则有
g
:
Y
→
X
g:Y\to X
g:Y→X使得
f
∘
g
=
1
Y
f\circ g=1_Y
f∘g=1Y,对于任意的
y
∈
Y
y\in Y
y∈Y,则有
g
(
y
)
∈
X
g\left(y\right)\in X
g(y)∈X使得
f
(
g
(
y
)
)
=
f
∘
g
(
y
)
=
1
X
(
y
)
=
y
f\left(g\left(y\right)\right) = f\circ g\left(y\right) = 1_X\left(y\right)=y
f(g(y))=f∘g(y)=1X(y)=y
成立,故
f
f
f满射
充分性:若
f
f
f是满射,则构造
g
g
g如下:
g
:
Y
→
X
,
g
(
y
)
=
x
g:Y\to X,\\ g\left(y\right)=x
g:Y→X,g(y)=x
则
g
g
g是函数。这是因为对于任意的
y
∈
Y
y\in Y
y∈Y,由于
f
f
f是满射,所以
f
−
1
(
{
y
}
)
f^{-1}\left(\left\{y\right\}\right)
f−1({y})\neq \empty$,
从而有某唯一确定的 x ∈ f − 1 ( { y } ) ⊆ X x\in f^{-1}\left(\left\{y\right\}\right)\subseteq X x∈f−1({y})⊆X,使得 < y , x > ∈ g \left<y,x\right>\in g ⟨y,x⟩∈g
并且对于任意的
y
∈
Y
y\in Y
y∈Y,
f
∘
g
(
y
)
=
f
(
g
(
y
)
)
=
f
(
x
)
=
y
=
1
Y
(
y
)
f\circ g\left(y\right) = f\left(g\left(y\right)\right) = f\left(x\right)=y=1_Y\left(y\right)
f∘g(y)=f(g(y))=f(x)=y=1Y(y)
所以
f
∘
g
=
1
Y
f\circ g=1_Y
f∘g=1Y,故
f
f
f是右可逆的
(3)先证 f f f是可逆的,则 f f f是双射
由于 f f f可逆的,所以有 g : Y → X g:Y\to X g:Y→X,使得 g ∘ f = 1 X g\circ f=1_X g∘f=1X且 f ∘ g = 1 Y f\circ g=1_Y f∘g=1Y成立
根据 1 X 1_X 1X是单射, f f f是单射;
根据 1 Y 1_Y 1Y是满射, f f f是满射,故 f f f是双射
再证 f f f是双射,则 f f f既是左可逆的,又是右可逆的
由于 f f f是双射,所以 f f f是单射,也是满射,根据(1)和(2)可知, f f f既是左可逆的,又是右可逆的
最后证明, f f f既是左可逆的,又是右可逆的 ,则 f f f是可逆的
由于 f f f左可逆,所以有 g 1 : Y → X g_1:Y\to X g1:Y→X,使得 g 1 ∘ f = 1 X g_1\circ f=1_X g1∘f=1X
由于 f f f右可逆,所以有 g 2 : Y → X g_2:Y\to X g2:Y→X,使得 f ∘ g 2 = 1 Y f\circ g_2=1_Y f∘g2=1Y
因此有
g
1
=
g
1
∘
1
Y
=
g
1
∘
(
f
∘
g
2
)
=
(
g
1
∘
f
)
∘
g
2
=
1
X
∘
g
2
=
g
2
g_1=g_1\circ 1_Y = g_1\circ\left(f\circ g_2\right)=\left(g_1\circ f\right)\circ g_2=1_X\circ g_2 = g_2
g1=g1∘1Y=g1∘(f∘g2)=(g1∘f)∘g2=1X∘g2=g2
故有
g
=
g
1
=
g
2
g=g_1=g_2
g=g1=g2,使得
g
∘
f
=
1
X
g\circ f=1_X
g∘f=1X且
f
∘
g
=
1
Y
f\circ g=1_Y
f∘g=1Y,由此可知
f
f
f是可逆的
定理4:双射函数的逆函数是唯一的
证明:设双射函数
f
:
X
→
Y
f:X\to Y
f:X→Y.若
f
f
f有逆函数
g
1
g_1
g1和
g
2
g_2
g2,那么
g
1
=
g
1
∘
1
Y
=
g
1
∘
(
f
∘
g
2
)
=
(
g
1
∘
f
)
∘
g
2
=
1
X
∘
g
2
=
g
2
g_1=g_1\circ 1_Y=g_1\circ \left(f\circ g_2\right)=\left(g_1\circ f\right)\circ g_2=1_X\circ g_2=g_2
g1=g1∘1Y=g1∘(f∘g2)=(g1∘f)∘g2=1X∘g2=g2
故逆函数是唯一的
定理5:设 f : X → Y , g : Y → Z f:X\to Y,g:Y\to Z f:X→Y,g:Y→Z,并且 f f f和 g g g都是可逆的 ,则
(1)
(
f
−
1
)
−
1
=
f
\left(f^{-1}\right)^{-1}=f
(f−1)−1=f
(2)
(
g
∘
f
)
−
1
=
f
−
1
∘
g
−
1
\left(g\circ f\right)^{-1}=f^{-1}\circ g^{-1}
(g∘f)−1=f−1∘g−1
证明:
(1)显然
(2)因
g
∘
f
:
X
→
Z
g\circ f:X\to Z
g∘f:X→Z,所以
(
g
∘
f
)
−
1
:
Z
→
X
\left(g\circ f\right)^{-1}:Z\to X
(g∘f)−1:Z→X,因
f
−
1
:
Y
→
X
,
g
−
1
:
Z
→
Y
f^{-1}:Y\to X, g^{-1}:Z\to Y
f−1:Y→X,g−1:Z→Y,所以
f
−
1
∘
g
−
1
:
Z
→
X
f^{-1}\circ g^{-1}:Z\to X
f−1∘g−1:Z→X
(
f
−
1
∘
g
−
1
)
∘
(
g
∘
f
)
=
f
−
1
∘
(
g
−
1
∘
g
)
∘
f
=
f
−
1
∘
1
Y
∘
f
=
f
−
1
∘
f
=
1
X
(
g
∘
f
)
∘
(
f
−
1
∘
g
−
1
)
=
g
∘
(
f
∘
f
−
1
)
∘
g
−
1
=
g
∘
1
Y
∘
g
−
1
=
g
∘
g
−
1
=
1
Z
\left(f^{-1}\circ g^{-1}\right)\circ \left(g\circ f\right) = f^{-1}\circ \left(g^{-1}\circ g\right)\circ f=f^{-1}\circ 1_Y \circ f=f^{-1}\circ f=1_X\\ \left(g\circ f\right)\circ \left(f^{-1}\circ g^{-1}\right) = g\circ \left(f\circ f^{-1}\right)\circ g^{-1}=g\circ 1_Y\circ g^{-1}=g\circ g^{-1}=1_Z
(f−1∘g−1)∘(g∘f)=f−1∘(g−1∘g)∘f=f−1∘1Y∘f=f−1∘f=1X(g∘f)∘(f−1∘g−1)=g∘(f∘f−1)∘g−1=g∘1Y∘g−1=g∘g−1=1Z
故
(
g
∘
f
)
−
1
=
f
−
1
∘
g
−
1
\left(g\circ f\right)^{-1}=f^{-1}\circ g^{-1}
(g∘f)−1=f−1∘g−1
课后习题
4.设 f : X → Y , g : Y → Z f:X\to Y, g:Y\to Z f:X→Y,g:Y→Z.若 g ∘ f g\circ f g∘f是可逆的,则 f f f和 g g g一定是左可逆的吗?为什么?
证明:
f
f
f单射,
g
g
g不一定
因为
g
∘
f
g\circ f
g∘f是左可逆的,所以
g
∘
f
g\circ f
g∘f单射,所以
f
f
f单射
构造思路:有限集合的情况的时候,单射
∣
X
∣
≤
∣
Y
∣
\left|X\right|\le \left|Y\right|
∣X∣≤∣Y∣
那么现在
∣
X
∣
≤
∣
Y
∣
,
∣
X
∣
≤
∣
Z
∣
\left|X\right|\le \left|Y\right|, \left|X\right|\le \left|Z\right|
∣X∣≤∣Y∣,∣X∣≤∣Z∣
只要构造一个
∣
Y
∣
>
∣
Z
∣
\left|Y\right|>\left|Z\right|
∣Y∣>∣Z∣
设
f
(
x
1
)
=
y
1
,
f
(
x
2
)
=
y
2
f\left(x_1\right)=y_1,f\left(x_2\right)=y_2
f(x1)=y1,f(x2)=y2
g
(
y
1
)
=
z
1
,
g
(
y
2
)
=
g
(
y
3
)
=
z
2
g\left(y_1\right)=z_1, g\left(y_2\right)=g\left(y_3\right)=z_2
g(y1)=z1,g(y2)=g(y3)=z2
由于
g
g
g不是单射,所以
g
g
g不是单射
5.设 f : X → Y , ∣ X ∣ ≥ 2 f:X\to Y,\left|X\right|\ge 2 f:X→Y,∣X∣≥2.证明: f f f是可逆的当且仅当 f f f有唯一的左(右)逆函数
证明:
必要性:
f
f
f是可逆的
因此
f
f
f双射,进而
f
f
f左可逆且右可逆
设左逆函数
g
1
,
g
2
:
Y
→
X
g_1,g_2:Y\to X
g1,g2:Y→X,且
g
1
∘
f
=
g
2
∘
f
=
1
X
g_1\circ f=g_2\circ f=1_X
g1∘f=g2∘f=1X
右逆函数
h
:
Y
→
X
,
f
∘
h
=
1
Y
h:Y\to X, f\circ h = 1_Y
h:Y→X,f∘h=1Y
则
g
1
=
g
1
∘
1
Y
=
g
1
∘
(
f
∘
h
)
=
(
g
1
∘
f
)
∘
h
=
1
X
∘
h
=
h
g_1=g_1\circ 1_Y=g_1\circ \left(f\circ h\right)=\left(g_1\circ f\right)\circ h=1_X\circ h=h
g1=g1∘1Y=g1∘(f∘h)=(g1∘f)∘h=1X∘h=h
同理,
g
2
=
h
g_2=h
g2=h,因此
g
1
=
g
2
g_1=g_2
g1=g2
f
f
f有唯一的左逆函数
右逆函数同理
充分性:
1.
f
f
f有唯一左逆函数
因为
f
f
f左可逆,因此
f
f
f单射
假设
f
f
f不满射,则
∃
a
∈
Y
,
∀
x
∈
X
,
f
(
x
)
≠
a
\exists a\in Y, \forall x\in X,f\left(x\right)\neq a
∃a∈Y,∀x∈X,f(x)=a
构造左逆函数
g
1
,
g
2
:
Y
→
X
g_1,g_2:Y\to X
g1,g2:Y→X
使得
g
1
(
a
)
=
x
1
g
2
(
a
)
=
x
2
x
1
,
x
2
∈
X
,
x
1
≠
x
2
g_1\left(a\right)=x_1\\ g_2\left(a\right)=x_2\\ x_1,x_2\in X, x_1\neq x_2
g1(a)=x1g2(a)=x2x1,x2∈X,x1=x2
显然
g
1
∘
f
=
g
2
∘
f
=
1
X
g_1\circ f=g_2\circ f=1_X
g1∘f=g2∘f=1X
与唯一左逆函数矛盾
因此
f
f
f满射
2.
f
f
f有唯一右逆函数
因为
f
f
f右可逆,因此
f
f
f满射
假设
f
f
f不单射,即
∃
x
1
,
x
2
∈
X
,
x
1
≠
x
2
,
f
(
x
1
)
=
f
(
x
2
)
=
y
∈
Y
\exists x_1,x_2\in X, x_1\neq x_2,f\left(x_1\right)=f\left(x_2\right)=y \in Y
∃x1,x2∈X,x1=x2,f(x1)=f(x2)=y∈Y
构造右逆函数
h
1
,
h
2
:
Y
→
X
h_1,h_2:Y\to X
h1,h2:Y→X
使得
h
1
(
y
)
=
x
1
h
2
(
y
)
=
x
2
h_1\left(y\right)=x_1\\ h_2\left(y\right)=x_2
h1(y)=x1h2(y)=x2
显然
f
∘
h
1
=
f
∘
h
2
=
1
Y
f\circ h_1= f\circ h_2=1_Y
f∘h1=f∘h2=1Y
与唯一右逆函数矛盾
因此
f
f
f单射
综上, f f f双射,进而 f f f可逆
参考:
离散数学(刘玉珍)