厄尔米特矩阵特征值为实数证明

厄尔米特矩阵 A H = A \mathbf{A}^H=\mathbf{A} AH=A
H H H为共轭转置
λ ‾ \overline{\lambda} λ λ \lambda λ的共轭复数
证明:
A x = λ x \mathbf{Ax}=\lambda \mathbf{x} Ax=λx
其中 λ \lambda λ A \mathbf{A} A的特征值, x \mathbf{x} x λ \lambda λ对应的特征向量
A x = λ x x H A H = λ H x H x H A H = λ ‾ x H x H A H x = λ ‾ x H x x H A x = λ ‾ x H x x H λ x = λ ‾ x H x ( λ − λ ‾ ) x H x = 0 λ = λ ‾ \begin{aligned} \mathbf{Ax}&=\lambda \mathbf{x}\\ \mathbf{x}^H\mathbf{A}^H&=\lambda^H \mathbf{x}^H\\ \mathbf{x}^H\mathbf{A}^H&=\overline{\lambda} \mathbf{x}^H\\ \mathbf{x}^H\mathbf{A}^H\mathbf{x}&=\overline{\lambda} \mathbf{x}^H\mathbf{x}\\ \mathbf{x}^H\mathbf{A}\mathbf{x}&=\overline{\lambda} \mathbf{x}^H\mathbf{x}\\ \mathbf{x}^H\lambda \mathbf{x}&=\overline{\lambda} \mathbf{x}^H\mathbf{x}\\ \left(\lambda-\overline{\lambda}\right)\mathbf{x}^H \mathbf{x}&=0\\ \lambda&=\overline{\lambda}\\ \end{aligned} AxxHAHxHAHxHAHxxHAxxHλx(λλ)xHxλ=λx=λHxH=λxH=λxHx=λxHx=λxHx=0=λ

同理,实对称矩阵的特征值也是实数

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值