N个球放M个盒子问题



研究了一天的《N个球放M个盒子问题》~~~~~~~~~~~~8种情况全部用公式解决



N球,M盒,由于球是否相同,盒是否相同,盒是否可以为空,共2^3=8种:

1、球同,盒同,盒不可以为空  Pm(N)--这符号表示部分数为m的N-分拆的个数,m是P的下标,为了好看我将大写的M弄成小写
2、球同,盒同,盒可以为空    Pm(N+M)--为什么要加M,与4为什么要在3的基础上加M是一样的,就是为了保证不为空
3、球同,盒不同,盒不可以为空  C(N-1, M-1)
4、球同,盒不同,盒可以为空   C(N+M-1, M-1)
5、球不同,盒同,盒不可以为空  S(N, M) --第二类斯特林数
6、球不同,盒同,盒可以为空   S (N, 1) + S(N, 2) + S(N, 3) + ... + S(N, M)
7、球不同,盒不同,盒不可以为空  M! * S(N, M)
8、球不同,盒不同,盒可以为空 M^N  --表示M的N次方


-------------------------------------------------------------------------------------------
三、公式解释
对以上1,2,5,6,7,8公式作解释说明,3,4不用解释了,插板法
先说:
8、球不同,盒不同,盒可以为空 M^N 
不妨设这N个小球为a1 , a2 ,…,an  .首先把a1 放进盒子里,因为M个盒子是不同的,所以有M种放法,同理,a2 ,…,an放进盒子里都有M种放法,依乘法原则知不同的方案数 N  = M*M*。。。M(共N个)=M^N

8-18个不同的球放进3个不同的盒子里,有几种方法?
每个球都有3种选择,8个球就有3^8=6561

8-2 某单位今年新进了 个工作人员,可以分配到 个部门,但每个部门至多只能接收 个人,问:共有几种不同的分配方案?
A 12       B 16     C 24     D .以上都不对
3^3-3=24
--------------------------------------------------------------------
接下来说:

1、球同,盒同,盒不可以为空  Pm(N)
2、球同,盒同,盒可以为空    Pm(N+M)
----------------------------------------------
首先要记得:
P1(n)=1 , Pn(n)=1, Pn-1(n)=1
P2(n)=[n/2]  --[]表示不超过n/2的最大整数
Pn+1(n)=0 --或者表示没意义,因为n个球要放到n+1个盒子中,又不允许为空,没意义。
公式:Pm(N)=P1(N-m)+P2(N-m)+P3(N-m)+......+Pm(N-m) ------(共M项)


有人可能会说上面这几个都难得记,你只要明白拆分或结合实际意思就容易知道了,比如Pn(n)=1,n个球放n个盒子,每个盒子又不能为空,肯定只有1种。
--------------------------------------------------------------------------------
例2-1:7个相同球放入4个相同盒子,每盒至少一个,有多少种放法?
方法一,公式法。
代入公式: Pm(N)=P1(N-m)+ P2(N-m) + P3(N-m) +......+ Pm(N-m)
P4(7)=P1(3)+P2(3)+P3(3)-------P4(3),没意义省去
=1+1+1
=3,故有3种


方法二,拆数法。
1、先每个盒子放一个,还剩下3个球;
2、把“3”这个数拆成4个数(因为4个盒子)有如下:
3000  2100 1110 ---------拆数时不考虑顺序
---------------------------------------------------------------------------------------
例1-1:7个相同球放入4个相同盒子,可以空盒,有多少种放法?

方法一,公式法。
代入公式:Pm(N)=P1(N-m)+P2(N-m)+P3(N-m)+......+Pm(N-m)
P4(7+4)= P4(11)
=P1(7)+P2(7) +P3(7) +P4(7)
=1+3+(P1(4)+ P2(4)+ P3(4))+( P1(3)+ P2(3)+ P3(3)+ P4(3))
=1+3+(1+2+1)+(1+1+1+0)
=4+4+3
=11,故有11种


方法二,拆数法。
1、先借4个球来,每个盒子放一个,还剩下7个球;
2、把“7”这个数拆成4个数(因为4个盒子)有如下:
0007  0016 0025 0034 0115 0124 0133 0223 1114 1123 1222

--------------------------------------------------------------------------------
例2-2:10个相同的小球放进5个相同的盒子,使得无一空盒,共有多少种放法?
解析:
10个放了5个,还有5个。
5个放到1个盒,放到2个盒,放到3个盒。。。。放到5个盒,列式:
P5(10)
=P1(5)+P2(5)+P3(5)+P4(5)+P5(5)

=1+2+[P1(2)+P2(2)]+1+1
=1+2+[1+1]+1+1
=7
--------------------------------------------------------------------------------
最后来说复杂的:

5、球不同,盒同,盒不可以为空  S(N, M)
6、球不同,盒同,盒可以为空   S (N, 1) + S(N, 2) + S(N, 3) + ... + S(N, M)
7、球不同,盒不同,盒不可以为空  M! * S(N, M)
--------------------------------------------------------------------------------

S2M

1

2

3

4

5

6

7

8

9

1

1









2

1

1








3

1

3

1







4

1

7

6

1






5

1

15

25

10

1





6

1

31

90

65

15

1




7

1

63

301

350

140

21

1



8

1

127

966

1701

1050

266

28

1


9

1

255

3025

7770

6951

2646

462

36

1

上面就是传说的:第二类斯特林数(第二类Stirling数)----可以百度下
S(N, M)表示什么意思呢?就是第N行M列的数字,例如S(7, 3) 就是第7行第3个数字。
--------------------------------------------------------------------------------
5-18个不同的球放进3个相同的盒子里,每盒至少一个,有几种方法?
公式法:S(N, M)=S(8, 3)。第8行的第3列,对着表格找相应的数为966
--------------------------------------------------------------------------------
6-18个不同的球放进3个相同的盒子里,有几种方法 
公式法: S(8,3)=S (8, 1) + S(8, 2) + S(8, 3)=1+127+966=1094。即为第8行前3列的和。
注:这种类型结合第8种更简单些,在8-1中,3个元素都相异,比如116,一共有6种排列(球是不同的),此问中,盒子是相同的,因此这6种排列都只算一种情况。 但如果2个元素相同的时候,有且只有 008,只有3种排列,我们多添加3种进去,令其也重复6次,则(6561+3)就是所有的情况都重复了6次,(6561+3)/6=1094即为所求。
--------------------------------------------------------------------------------
7-18个不同的球放进3个不同的盒子里,每盒至少一个,有几种方法 
公式:M! * S(N, M)=3*S(8, 3)=6*966=5796
7-2 4名教师分派到3所中学任教,每所至少1名教师,则有不同的分派方案多少种?
公式: M! * S(N, M)=3 *S(4, 3)= 6*6=36
--------------------------------------------------------------------------------
现在剩下怎么记上面这个表格了,其实记这个表格非常简单:
1、先写好行号1---9和列号1---9
2、然后前3个数字写1
4、左右两边都是1,第几行就有几个数,比如第5行就是1XXX1
5 S(r, c) = S(r-1,c-1) + c * S(r-1, c),含义是第r排的第c个数等于他上一排的上一个位置数字加上一排的同样位置数字的c倍(对着上表的行号和列号看,很容易记)。r=row,c=column.
例如S(7, 3就是第7排第3个数字,所以他等于上排第6排第2个数字+6排第3个位置*3
所以画图的话,明显第1排是1,第211,推理第3排(左右两边都是1,只有中间那个数字没确定)。
所以 S(3, 2) = 2排第1个数字+2排第2数字*2 = 1+1*2 = 3,所以第3排数字就是131。同理 S(4, 2) = S(3, 1)+ 2S(3, 2) = 1+2*3 = 7, ... 如此类推。
--------------------------------------------------------------------------------

四、练习题
1、8个相同的球放进4个相同的盒子里,每盒至少一个,有几种方法  ?
2、 8 个相同的球放进4个不同的盒子里,每盒至少一个,有几种方法  ?
3、 8 个不同的球放进4个不同的盒子里,每盒至少一个,有几种方法  ?
4、 8 个不同的球放进4个相同的盒子里,每盒至少一个,有几种方法 ?
5、 8 个相同的球放进4个相同的盒子里,有几种方法 ?
6、 8 个相同的球放进4个不同的盒子里,有几种方法  ? 
7、 8 个不同的球放进4个不同的盒子里,有几种方法 ?  
8、 8 个不同的球放进4个相同的盒子里,有几种方法  ?


9、8个不同的球平均分给4个小朋友,有几种分法  ?
10、8个不同的球平均分成4堆,有几种分法  ?
--------------------------------------------------------------------------------
下面是我做的,不一定是正确答案,大家可以先做了对一下结果,不同再讨论下:

1、8个相同的球放进4个相同的盒子里,每盒至少一个,有几种方法  ?
公式:球相同,盒相同,拆分公式。
P4(8)=P1(4)+P2(4)+P3(4)+P4(4)
=1+2+1+1
=5

2、8个相同的球放进4个不同的盒子里,每盒至少一个,有几种方法  ?
公式:球相同,盒不同,插板法。
C(8-1,4-1)
=C(7,3)
=7*6*5/6
=35

3、8个不同的球放进4个不同的盒子里,每盒至少一个,有几种方法  ?
公式:球不同,盒不同,不为空,阶乘和二类斯特林数,球是行号,盒子是列号。
M!*S(N,M)
=4! * S(8,4)
=24*1701
=40824


4、8个不同的球放进4个相同的盒子里,每盒至少一个,有几种方法 ?
公式:球不同,盒同,二类斯特林数,为空是累加,不为空是直接取数,球是行号,盒子是列号。
S(N,M)
=S(8,4)
=1701

5、8个相同的球放进4个相同的盒子里,有几种方法 ?
公式:球同,盒同,为空,拆分公式。
P4(8+4)=P4(12)
=P1(8)+P2(8)+P3(8)+P4(8)
=1+4+(P1(5)+P2(5)+P3(5))+(P1(4)+P2(4)+P3(4)+P4(4))
=1+4+(1+2+(P1(2)+P2(2))+(1+2+1+1)
=1+4+5+5
=15


6、8个相同的球放进4个不同的盒子里,有几种方法  ?
公式:球同,盒不同,插板法。
C(11,3)
=11*10*9/6=15*11=165

7、8个不同的球放进4个不同的盒子里,有几种方法 ?
公式:球不同,盒不同,为空,直接是M^N
4^8=4^4*4^4=2^8*2^8=256*256=65536

8、8个不同的球放进4个相同的盒子里,有几种方法  ?
公式:球不同,盒同,二类斯特林数,为空,是累加
S (N, 1) + S(N, 2) + S(N, 3) + ... + S(N, M)
=S(8,1)+S(8,2)+S(8,3)+S(8,4)
=1+127+966+1701
=2795


9、8个不同的球平均分给4个小朋友,有几种分法  ?
从8个球中取2个分给第1个小朋友,从剩下6个中取2个来分给第二个小朋友。。。
C(8,2)*C(6,2)*C(4,2)*C(2,2) = 2520


10、8个不同的球平均分成4堆,有几种分法  ?
C(8,2)*C(6,2)*C(4,2)*C(2,2) / 4!= 2520/24 =105
------------------------------------------------------------------------------------
疑问:用“军团-云淡”的“ 按取球多寡来分类讨论”的 拆数法怎么做以下的题:

1、8个相同的球放进4个相同的盒子里,每盒至少一个,有几种方法  ?
5、8个相同的球放进4个相同的盒子里,有几种方法 ?

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值