微信公众号:「Python读财」
如有问题或建议,请公众号留言
Pandas教程写的差不多了,来写一写与数据可视化相关的Matplotlib
系列教程吧。读过Pandas系列文章的读者应该都知道,我写文章更多的会融入我对这个东西的理解,Matplotlib
系列也是如此。这个系列会涉及Matplotlib
的一些简单的概念、绘图原理、常见图形的绘制以及一些高阶的绘图技巧。学完之后,期待达到的效果是可以用Matplotlib
画出这样的图形。
这篇文章先介绍一下Matplotlib
的一些简单基本概念和绘图原理,直入正题~
不知道有多少同学和我一样,在刚接触Matplotlib
时,会被书上的plt
、ax
以及subplots
等各种概念所迷惑,心里存在无数个问号,这些究竟是啥?画出来的图不是一样的吗?他们有啥区别?下面就一步步来解答这些迷惑。
概念引入
首先,我们应该要了解一张用Matplotlib
画出来的图的具体构造,引用一张官方的图:
我们先主要看图里面红色框的Figure
和蓝色框的Axes
,如何理解这两个东西呢?
如果将Matplotlib
绘图和我们平常画画相类比,可以把Figure
想象成一张纸(一般被称之为画布),Axes
代表的则是纸中的一片区域(当然可以有多个区域,这是后续要说到的subplots
),上一张更形象一点的图。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FgVXCRD3-1588326654062)(https://upload-images.jianshu.io/upload_images/8316927-2513383c7b8e3600.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)]
在Figure
画布中,Axes1
区域画了一张数据仪表盘,Axes2
区域画了柱状图,Axes3
区域绘制了一张地图,相信还是挺好理解的。