加权残值法
加权残值法(Method of Mean Weighted Residuals)是一种应用广泛的求解微分方程的方法.该方法先假定一族带有待定参数的定义在全域上的近似函数,该近似解不能精确满足微分方程和边界条件,即存在残差.在加权平均的意义下消除残差,就得到加权残值法的方程.由于试函数定义在全域上,所得方程的系数矩阵一般为满阵.选取不同的权函数,可得到不同的加权参量法。[1]
引入加权残值的原因
1.结构复杂很难列出泛函的具体表达式
2.列出的泛函对应的微分方程很难从直接求解
3.对于一些工程问题,只要找到满足一定精度的解即可
加权残值法的思路
设方程的一般形式f(g(x,y))=0,要求解的g,但是比较难,所以寻求加权积分意义下的g的近似解
对f(g(x,y))乘以权函数W在f所在空间A积分,此时,W可以看做是在A中的一组基,这样乘以权函数积分为0,则f(g(x,y))=0
权函数W可以有不同的取法,若采用形函数作为权函数,则称为Galekin加权残值法。
[1] https://baike.sogou.com/v72422602.htm?fromTitle=%E5%8A%A0%E6%9D%83%E6%AE%8B%E5%80%BC%E6%B3%95
[2]https://wenku.baidu.com/view/a491200e763231126edb1160.html?re=view
[3]《有限元实用教程》