残差函数解读

残差函数是网络层之中常见的一种函数,这里只想用通俗易懂的内容去阐述残差函数的公式内容
残差函数的图像
也就是说,正常的神经网络层x经过weight layer之后为 r e l u ( w 1 x + b ) relu(w_{1}x+b) relu(w1x+b),再经过一次weight layer之后为 r e l u ( w 2 ∗ ( r e l u ( w 1 x + b ) ) ) relu(w_{2}*(relu(w_{1}x+b))) relu(w2(relu(w1x+b)))
正常情况下 F ( x ) = r e l u ( w 2 ∗ ( r e l u ( w 1 x + b ) ) ) ) F(x) = relu(w_{2}*(relu(w_{1}x+b)))) F(x)=relu(w2(relu(w1x+b))))
然而在此特殊情况下的公式,我们定义它为H(x),这里的H(x)属于经过特殊定义的残差函数的内容,可以得到 H ( x ) = F ( x ) + x H(x)=F(x)+x H(x)=F(x)+x也就是说现在的前向传播函数H(x)为原来的前向传播函数F(x)加上两层之前的输入x。
这样拟合的残差函数F(x) = H(x)-x更简单。虽然理论上两者都能得到近似拟合,但是后者学习起来更容易。
拟合的残差函数含义,虽然得到的是 H ( x ) = F ( x ) + x H(x)=F(x)+x H(x)=F(x)+x的内容,但是需要求出的内容仍然为F(x) = H(x)-x的内容。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值