加权余量法求解偏微分方程

加权余量法(Weighted Residual Method)是一种数值方法,用于求解偏微分方程(PDEs)。其基本思想是将偏微分方程的残差(或余量)通过加权函数加权,并使加权余量在定义域上为零,从而形成一组代数方程进行求解。

基本思想

假设我们有一个偏微分方程:

L ( u ) = f \mathcal{L}(u) = f L(u)=f

其中, L \mathcal{L} L 是一个微分算子, u u u 是待求解的函数, f f f是已知函数。

选取试探解

首先,我们选取一个试探解 u h u_h uh,通常是通过一些基函数的线性组合来表示:

u h = ∑ i = 1 n c i ϕ i u_h = \sum_{i=1}^{n} c_i \phi_i uh=i=1nciϕi

其中, ϕ i \phi_i ϕi是基函数, c i c_i ci是待定系数。

计算残差

将试探解代入原方程,我们可以得到残差 R R R

R = L ( u h ) − f R = \mathcal{L}(u_h) - f R=L(uh)f

选择加权函数

选择一组加权函数 w i w_i wi,并通过加权余量法的基本要求,使加权余量在整个定义域上为零:

∫ Ω w i R   d Ω = 0 ∀ i \int_{\Omega} w_i R \, d\Omega = 0 \quad \forall i ΩwiRdΩ=0i

由于试探函数中一共n个系数,固需要选取n个加权函数,得到n个方程组。

形成方程组

将残差 R R R 代入,得到以下方程组:

∫ Ω w i ( L ( u h ) − f ) d Ω = 0 ∀ i ∈ ( 1 , n ) \int_{\Omega} w_i \left( \mathcal{L}(u_h) - f \right) d\Omega = 0 \quad \forall i \in (1,n) Ωwi(L(uh)f)dΩ=0i(1,n)

通过这些方程组可以求解出待定系数 c i c_i ci

加权余量法权函数选择

在加权余量法中,可以选择不同的权函数,常用的权函数选择有如下形式

配点法

权函数取为狄拉克函数 w i = δ ( x − x i ) w_i = \delta (x-x_i) wi=δ(xxi),这种方法相当于简单的强迫余量函数在n个点上等于0

子域法

在n个子域 Ω i \Omega_i Ωi w i = 1 w_i =1 wi=1,在子域外 w i = 0 w_i =0 wi=0,这种方法相当于强迫余量函数在n个子域上等于0

最小二乘法

w j = ∂ ∂ c j L ( ∑ i = 1 n ϕ i c i ) w_{j} = \frac{\partial}{\partial{c}_{j}}\mathcal{L}( \sum_{i=1}^{n}{\phi}_{i}{c}_{i} ) wj=cjL(i=1nϕici)

此方法的本质是使得如下函数取极小值

I ( c i ) = ∫ Ω L 2 ( ∑ i = 1 n ϕ i c i ) d Ω I(c_i)=\int_\Omega\mathcal{L}^2(\sum_{i=1}^n\mathbf{\phi}_i\mathbf{c}_i) \mathrm{d}\Omega I(ci)=ΩL2(i=1nϕici)dΩ

伽辽金法

取权函数为势函数的基函数 ϕ i \phi_i ϕi

应用示例

假设我们有一个一维的偏微分方程:

− d 2 u d x 2 = f ( x ) , x ∈ ( 0 , 1 ) -\frac{d^2 u}{dx^2} = f(x), \quad x \in (0, 1) dx2d2u=f(x),x(0,1)

边界条件为 u ( 0 ) = u ( 1 ) = 0 u(0)=u(1) =0 u(0)=u(1)=0

选取试探解

选取试探解 u h u_h uh为基函数的线性组合,例如使用线性基函数:

u h = ∑ i = 1 n c i ϕ i ( x ) u_h = \sum_{i=1}^{n} c_i \phi_i(x) uh=i=1nciϕi(x)

其中, ϕ i ( x ) \phi_i(x) ϕi(x)满足边界条件。

计算残差

残差 R R R为:

R = − d 2 u h d x 2 − f ( x ) R = -\frac{d^2 u_h}{dx^2} - f(x) R=dx2d2uhf(x)

选择加权函数

选择加权函数 w i = ϕ i w_i=\phi_i wi=ϕi即使用基函数作为加权函数。

形成方程组

形成方程组:

∫ 0 1 ϕ i ( − d 2 u h d x 2 − f ( x ) )   d x = 0 ∀ i \int_{0}^{1} \phi_i \left(-\frac{d^2 u_h}{dx^2} - f(x)\right) \, dx = 0 \quad \forall i 01ϕi(dx2d2uhf(x))dx=0i

通过分部积分和应用边界条件,可以将其转换为:

∫ 0 1 d ϕ i d x d u h d x   d x = ∫ 0 1 ϕ i f ( x )   d x ∀ i \int_{0}^{1} \frac{d \phi_i}{dx} \frac{d u_h}{dx} \, dx = \int_{0}^{1} \phi_i f(x) \, dx \quad \forall i 01dxdϕidxduhdx=01ϕif(x)dxi

u h u_h uh的表达式代入,得到一组线性代数方程:

∑ j = 1 n c j ∫ 0 1 d ϕ i d x d ϕ j d x   d x = ∫ 0 1 ϕ i f ( x )   d x ∀ i \sum_{j=1}^{n} c_j \int_{0}^{1} \frac{d \phi_i}{dx} \frac{d \phi_j}{dx} \, dx = \int_{0}^{1} \phi_i f(x) \, dx \quad \forall i j=1ncj01dxdϕidxdϕjdx=01ϕif(x)dxi

通过求解这组方程可以得到系数 c i c_i ci,从而得到近似解 u h u_h uh

  • 13
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值