【Code+ 7】同余方程

本文探讨了同余方程的解法,强调了积性性质,并提供了特定情况下的公式。针对k=0的情况,给出了不同素数p的特殊情况下的解。对于k不等于0的情况,通过gcd条件给出了不同p和b的解。最后,概述了解决此类问题的时间复杂度为O(P+NLogP)。
摘要由CSDN通过智能技术生成

题目解法

可以在 Oeis 上找到对应数列,记答案为 T ( N , x ) T(N,x) T(N,x)

首先, T ( N , x ) T(N,x) T(N,x) 是积性的,对于 g c d ( N , M ) = 1 gcd(N,M)=1 gcd(N,M)=1 ,有
T ( N × M , k ) = T ( N , k % N ) × T ( M , k % M ) T(N\times M,k)=T(N,k\%N)\times T(M,k\%M) T(N×M,k)=T(N,k%N)×T(M,k%M)

对于 k = 0 k=0 k=0 ,应有
T ( p e , 0 ) = { 2 e p = 2 p e − e % 2 p ≡ 3    ( m o d    4 ) ( ( p − 1 ) × e + p ) × p e − 1 p ≡ 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值