【CodeForces1205E】Expected Value Again

【题目链接】

【思路要点】

  • 一个字符串存在 b o r d e r border border i i i 等价于其存在周期 N − i N-i Ni
  • p ( i ) p(i) p(i) 表示是否存在周期 i i i ,由期望的线性性,答案即为 ∑ i , j E ( p ( i ) p ( j ) ) \sum_{i,j}E(p(i)p(j)) i,jE(p(i)p(j))
  • 考虑枚举 i , j i,j i,j ,如何计算 E ( p ( i ) p ( j ) ) E(p(i)p(j)) E(p(i)p(j)) ,首先给出结论, E ( p ( i ) p ( j ) ) = k max ⁡ ( g c d ( i , j ) , i + j − N ) − N E(p(i)p(j))=k^{\max(gcd(i,j),i+j-N)-N} E(p(i)p(j))=kmax(gcd(i,j),i+jN)N
  • 结论的证明如下:
    c n t cnt cnt 表示在周期 i , j i,j i,j 的描述下字符串中连通块的个数,不难发现 E ( p ( i ) p ( j ) ) E(p(i)p(j)) E(p(i)p(j)) 即为 k c n t − N k^{cnt-N} kcntN
    不失一般性地,我们假设 i &lt; j i&lt;j i<j
    对于 i + j ≤ N i+j\leq N i+jN 的情况,一个字符 s x s_x sx 一定等于 s x − i   ( x &gt; i ) s_{x-i}\ (x&gt;i) sxi (x>i) s x + j − i   ( x ≤ i ) s_{x+j-i}\ (x\leq i) sx+ji (xi) ,从而连通块的个数一定为 g c d ( i , j ) gcd(i,j) gcd(i,j)
    对于 i + j &gt; N i+j&gt;N i+j>N 的情况,首先考虑 j j j 个元素 t 1 , 2 , … , j t_{1,2,\dots,j} t1,2,,j 排成一个圆环,接着考虑字符串中每一对 s x = s x − i s_x=s_{x-i} sx=sxi 的相等关系,它们分别描述了 t 1 = t i + 1 , t 2 = t i + 2 , … t_{1}=t_{i+1},t_{2}=t_{i+2},\dots t1=ti+1,t2=ti+2, 。可以从在这个环上加边的过程中看出连通块的个数为 max ⁡ ( g c d ( i , j ) , i + j − N ) \max(gcd(i,j),i+j-N) max(gcd(i,j),i+jN)
  • 考虑加速计算,枚举 i + j = s i+j=s i+j=s 和其因数 g c d ( i , j ) = g gcd(i,j)=g gcd(i,j)=g ,我们需要计算合法的 ( i , j ) (i,j) (i,j) 的个数,也即和为 s g \frac{s}{g} gs ,各自大小在 N − 1 g \frac{N-1}{g} gN1 以内的互质数对 ( i , j ) (i,j) (i,j) 的个数,可以用莫比乌斯反演解决。
  • 时间复杂度 O ( ∑ i = 1 N ∑ j ∣ i d ( j ) ) O(\sum_{i=1}^{N}\sum_{j\mid i}d(j)) O(i=1Njid(j)) ,其中 d ( x ) d(x) d(x) 表示 x x x 的约数个数。

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 5;
const int P = 1e9 + 7;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
int power(int x, int y) {
	if (y == 0) return 1;
	int tmp = power(x, y / 2);
	if (y % 2 == 0) return 1ll * tmp * tmp % P;
	else return 1ll * tmp * tmp % P * x % P;
}
void update(int &x, int y) {
	x += y;
	if (x >= P) x -= P;
}
int miu[MAXN], powk[MAXN];
vector <int> factors[MAXN];
int tot, prime[MAXN], f[MAXN];
void sieve(int n) {
	miu[1] = 1;
	for (int i = 2; i <= n; i++) {
		if (f[i] == 0) prime[++tot] = f[i] = i, miu[i] = P - 1;
		for (int j = 1; j <= tot && prime[j] <= f[i]; j++) {
			int tmp = prime[j] * i;
			if (tmp > n) break;
			if (prime[j] == f[i]) miu[tmp] = 0;
			else miu[tmp] = (P - miu[i]) % P;
			f[tmp] = prime[j];
		}
	}
	for (int i = 1; i <= n; i++)
	for (int j = i; j <= n; j += i)
		factors[j].push_back(i);
}
int calc(int lim, int sum) {
	int l = 1, r = lim;
	chkmax(l, sum - lim);
	chkmin(r, sum - 1);
	if (l > r) return 0;
	int ans = 0;
	for (auto x : factors[sum])
		update(ans, 1ll * miu[x] * (P - (l - 1) / x + r / x) % P);
	return ans;
}
int main() {
	int n, k, ans = 0; read(n), read(k);
	sieve(2 * n), powk[0] = 1;
	for (int i = 1; i <= n; i++)
		powk[i] = 1ll * powk[i - 1] * k % P;
	for (int s = 2; s <= 2 * n - 2; s++)
	for (auto g : factors[s]) {
		int lim = (n - 1) / g, sum = s / g;
		if (lim <= 0 || sum <= 1) continue;
		update(ans, 1ll * calc(lim, sum) * powk[max(g, s - n)] % P);
	}
	writeln(1ll * ans * power(powk[n], P - 2) % P);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值