【CodeForces286E】Ladies' Shop

【题目链接】

【思路要点】

  • 首先,如果问题有解,必定存在一组解为\((a_1,a_2,...,a_N)\),这一点是充要的。
  • 充分性显然,对于必要性,我们假设问题有解,令这组解为\((p_1,p_2,...,p_k)\),但\((a_1,a_2,...,a_N)\)不是一组合法的解,即\((a_1,a_2,...,a_N)\)可能组合出\((a_1,a_2,...,a_N)\)以外的\(M\)以内的数字,那么我们用\((p_1,p_2,...,p_k)\)也一定能组合出这个数字,因此\((p_1,p_2,...,p_k)\)不是一组合法的解,原命题成立。
  • 从这个证明中,我们也可以看出,原问题无解等价于\((a_1,a_2,...,a_N)\)可以组合出\((a_1,a_2,...,a_N)\)以外的\(M\)以内的数字,这一点我们可以用一次NTT求多项式的平方得到。
  • 注意我们只需要判断是否存在这样的数字,而不需要找出所有的这样的数字,因此不需要求解这个多项式的\(M\)次方,只要求它的平方就可以判断了。
  • 接下来,我们需要使得问题的解尽可能优。
  • 如果一个数\(p_i\)可以被\((p_1,p_2,...,p_k)\)按照不唯一的方式组合出来,换而言之,\(p_i\)可以被\((p_1,p_2,...,p_{i-1})\)组合出来,那么\(p_i\)没有必要出现在答案中,因为\(p_i\)具有等效的替代品。
  • 注意到我们现在已经保证了问题有解,也就是\((a_1,a_2,...,a_N)\)不可能组合出\((a_1,a_2,...,a_N)\)以外的\(M\)以内的数字,再换一种说法,假设\((a_1,a_2,...,a_N)\)能够组合出\(X\)并且\(X≤M\)那么\(X\)一定是\((a_1,a_2,...,a_N)\)中的一个,并且如果\(X+a_i≤M\),那么\(X+a_i\)也一定是\((a_1,a_2,...,a_N)\)中的一个。
  • 那么实际上,我们只需要在NTT对多项式平方的结果对应位置找到系数为0处输出即可,也即\(a_x\)能作为答案中的一部分当且仅当不存在\(i\),\(j\)使得\(a_i+a_j=a_x\)。
  • 时间复杂度\(O(N+MLogM)\)。

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2097152;
const int P = 998244353;
const int G = 3;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
long long power(int x, int y) {
	if (y == 0) return 1;
	long long tmp = power(x, y / 2);
	if (y % 2 == 0) return tmp * tmp % P;
	else return tmp * tmp % P * x % P;
}
bool exist[MAXN];
long long a[MAXN];
int N, Log, cnt, ans[MAXN], home[MAXN];
void NTTinit() {
	for (int i = 0; i < N; i++) {
		int ans = 0, tmp = i;
		for (int j = 1; j <= Log; j++) {
			ans <<= 1;
			ans += tmp & 1;
			tmp >>= 1;
		}
		home[i] = ans;
	}
}
void NTT(long long *a, int mode) {
	for (int i = 0; i < N; i++)
		if (home[i] < i) swap(a[i], a[home[i]]);
	for (int len = 2; len <= N; len <<= 1) {
		long long delta;
		if (mode == 1) delta = power(G, (P - 1) / len);
		else delta = power(G, P - 1 - (P - 1) / len);
		for (int i = 0; i < N; i += len) {
			long long now = 1;
			for (int j = i, k = i + len / 2; k < i + len; j++, k++) {
				long long tmp = a[j];
				long long tnp = a[k] * now % P;
				a[j] = (tmp + tnp) % P;
				a[k] = (tmp - tnp + P) % P;
				now = now * delta % P;
			}
		}
	}
	if (mode == -1) {
		long long inv = power(N, P - 2);
		for (int i = 0; i < N; i++)
			a[i] = a[i] * inv % P;
	}
}
int main() {
	int n, m;
	read(n), read(m);
	for (int i = 1; i <= n; i++) {
		int x; read(x);
		a[x] = exist[x] = 1;
	}
	N = 1, Log = 0;
	while (N <= 2 * m) {
		N <<= 1;
		Log++;
	}
	NTTinit();
	NTT(a, 1);
	for (int i = 0; i < N; i++)
		a[i] = a[i] * a[i] % P;
	NTT(a, -1);
	for (int i = 1; i <= m; i++)
		if (a[i] && !exist[i]) {
			printf("NO\n");
			return 0;
		} else if (!a[i] && exist[i]) ans[++cnt] = i;
	printf("YES\n%d\n", cnt);
	for (int i = 1; i <= cnt; i++)
		printf("%d ", ans[i]);
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值