【BZOJ4872】【SHOI2017】分手是祝愿

【题目链接】

【思路要点】

  • 几点显然的性质:
  • 1、最少的操作次数为从大向小一次操作亮着的灯泡共用的次数。
  • 2、上述的操作的灯泡集合是唯一的,并且操作顺序不影响结果。
  • 3、操作集合外的灯泡后,一定要再操作一次,将其复原。
  • 由此,我们首先求出最小操作次数\(cnt\),令\(f_i\)为操作集合中有\(i\)个灯泡,期望的操作次数。
  • 则有\(\begin{equation}  
    \left\{  
                 \begin{array}{lr}  
                 f_i=i(i≤k), &  \\  
                 f_i=1+\frac{i}{n}f_{i-1}+\frac{n-i}{n}f_{i+1}(k<i≤N), &    
                 \end{array}  
    \right.  
    \end{equation}  \)
  • 直接用代入消元法解这个方程,复杂度是\(O(N)\)的,总复杂度\(O(N\sqrt{N})\)。
  • 但这个做法只能得95分,因为有时方程未知数的系数可能在模\(100003\)意义下等于0。
  • 另外一种思路就是令\(f_i\)表示操作集合大小从\(i\)变到\(i-1\)的期望步数。
  • 则有\(f_i=\frac{i}{N}+\frac{N-i}{N}(1+f_i+f_{i+1})\),即\(f_i=\frac{(n-i)*f_{i+1}+N}{i}\)。
  • 那么答案就是\(f_i\)的前缀和了。
  • 最后将答案乘以\(N!\)输出。
  • 时间复杂度\(O(N\sqrt{N})\)。

【代码】

/*Accepted Version*/
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 100005;
const int P = 100003;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
int power(int x, int y) {
	if (y == 0) return 1;
	int tmp = power(x, y / 2);
	if (y % 2 == 0) return 1ll * tmp * tmp % P;
	else return 1ll * tmp * tmp % P * x % P;
}
bool a[MAXN];
int inv[MAXN], x[MAXN], delta[MAXN];
int main() {
	int n, m;
	read(n), read(m);
	for (int i = 1; i <= n; i++)
		read(a[i]);
	int cnt = 0;
	for (int i = n; i >= 1; i--)
		if (a[i]) {
			cnt++;
			for (int j = 1; j * j <= i; j++)
				if (i % j == 0) {
					if (j * j == i) a[j] ^= true;
					else a[j] ^= true, a[i / j] ^= true;
				}
		}
	if (cnt <= m) {
		int ans = cnt;
		for (int i = 1; i <= n; i++)
			ans = 1ll * ans * i % P;
		writeln(ans);
		return 0;
	}
	for (int i = 1; i <= n; i++)
		inv[i] = power(i, P - 2);
	for (int i = n; i >= m + 1; i--)
		delta[i] = (1ll * (n - i) * delta[i + 1] + n) % P * inv[i] % P;
	x[m] = m;
	for (int i = m + 1; i <= cnt; i++)
		x[i] = (x[i - 1] + delta[i]);
	int ans = x[cnt];
	for (int i = 1; i <= n; i++)
		ans = 1ll * ans * i % P;
	writeln(ans);
	return 0;
}
/*95 Version - Divided by zero(Modulo P)*/
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 100005;
const int P = 100003;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
int power(int x, int y) {
	if (y == 0) return 1;
	int tmp = power(x, y / 2);
	if (y % 2 == 0) return 1ll * tmp * tmp % P;
	else return 1ll * tmp * tmp % P * x % P;
}
bool a[MAXN];
int inv[MAXN], k[MAXN], b[MAXN], x[MAXN];
int main() {
	int n, m;
	read(n), read(m);
	for (int i = 1; i <= n; i++)
		read(a[i]);
	int cnt = 0;
	for (int i = n; i >= 1; i--)
		if (a[i]) {
			cnt++;
			for (int j = 1; j * j <= i; j++)
				if (i % j == 0) {
					if (j * j == i) a[j] ^= true;
					else a[j] ^= true, a[i / j] ^= true;
				}
		}
	if (cnt <= m) {
		int ans = cnt;
		for (int i = 1; i <= n; i++)
			ans = 1ll * ans * i % P;
		writeln(ans);
		return 0;
	}
	for (int i = 1; i <= n; i++)
		inv[i] = power(i, P - 2);
	k[m + 1] = 1ll * (n - m - 1) * inv[n] % P;
	b[m + 1] = (1 + 1ll * (m + 1) * inv[n] % P * m) % P;
	for (int i = m + 2; i <= n; i++) {
		int tmp = (1 - 1ll * i * inv[n] % P * k[i - 1] % P + P) % P;
		k[i] = 1ll * (n - i) * inv[n] % P;
		b[i] = (1 + 1ll * i * inv[n] % P * b[i - 1]) % P;
		tmp = power(tmp, P - 2);
		k[i] = 1ll * k[i] * tmp % P;
		b[i] = 1ll * b[i] * tmp % P;
	}
	x[n] = b[n];
	for (int i = n - 1; i >= cnt; i--)
		x[i] = (b[i] + 1ll * k[i] * x[i + 1]) % P;
	int ans = x[cnt];
	for (int i = 1; i <= n; i++)
		ans = 1ll * ans * i % P;
	writeln(ans);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值