【CodeForces850F】Rainbow Balls

【题目链接】

【思路要点】

  • 考虑枚举最后剩下的一种球是哪一种球。
  • s u m = ∑ i = 1 N a i sum=\sum_{i=1}^{N}a_i sum=i=1Nai,问题被转化为了今有 a i a_i ai个黑球和 s u m − a i sum-a_i sumai个白球,在最后剩下黑球的情况下期望的操作步数。
  • f i f_i fi表示当前有 i i i个黑球和 s u m − a i sum-a_i sumai个白球,在最后剩下黑球的情况下期望的操作步数。
  • 在这个定义下,有 f s u m = 0 f_{sum}=0 fsum=0,因为我们仅考虑最后剩下黑球的情况,所以同样有 f 0 = 0 f_{0}=0 f0=0
  • p = i ∗ ( s u m − i ) s u m ∗ ( s u m − 1 ) p=\frac{i*(sum-i)}{sum*(sum-1)} p=sum(sum1)i(sumi) p p p表示的是在进行一次操作后黑球多或少一个的概率,它们显然是相等的。
  • 我们可以将这个问题转化为在序列上随机游走的问题:一个长度为 s u m + 1 sum+1 sum+1的序列,位置编号为0至 s u m sum sum,我们在点 i ( 0 &lt; i &lt; s u m ) i(0&lt;i&lt;sum) i(0<i<sum)处向前和向后的概率是相等的,在序列的两头会停下来。
  • 有结论:在点 i i i处走到点 s u m sum sum的概率为 i s u m \frac{i}{sum} sumi,走到点的概率0为 s u m − i s u m \frac{sum-i}{sum} sumsumi
  • 证明较为简单:不妨设点 i i i处走到点 s u m sum sum的概率为 p i p_i pi,有 p 0 = 0 , p s u m = 1 , p i = p i − 1 + p i + 1 2 ( 0 &lt; i &lt; s u m ) p_0=0,p_{sum}=1,p_i=\frac{p_{i-1}+p_{i+1}}{2}(0&lt;i&lt;sum) p0=0,psum=1,pi=2pi1+pi+1(0<i<sum),因此有 p i + 1 − p i = p i − p i − 1 ( 0 &lt; i &lt; s u m ) p_{i+1}-p_i=p_i-p_{i-1}(0&lt;i&lt;sum) pi+1pi=pipi1(0<i<sum),即 p p p是一个等差数列,则易证上述结论。
  • 有了这个结论,我们就可以列出 f i f_i fi的关系式了。
  • f i = p ∗ f i − 1 + p ∗ f i + 1 + ( 1 − 2 p ) ∗ f i + i s u m ( 0 &lt; i &lt; s u m ) f_i=p*f_{i-1}+p*f_{i+1}+(1-2p)*f_i+\frac{i}{sum}(0&lt;i&lt;sum) fi=pfi1+pfi+1+(12p)fi+sumi(0<i<sum),注意最后加的不是1,而是点 i i i处走到点 s u m sum sum的概率,因为若走到点0处,就不满足最后剩下黑球的前提了,所以不作统计。
  • 这就显然有了一种 O ( ( ∑ a i ) 3 ) O((\sum a_i)^3) O((ai)3)的高斯消元的做法。
  • 我们发现只要得到了 f 1 f_1 f1,我们就能轻松地解出 f f f的前 a i a_i ai项,回答问题。
  • 通过高斯消元的做法打表,我们发现 f 1 = ( s u m − 1 ) 2 s u m f_1=\frac{(sum-1)^2}{sum} f1=sum(sum1)2(此处笔者并不会证明)。
  • 由此解出 f f f的前 a i a_i ai项,答案即为 ∑ i = 1 N f a i \sum_{i=1}^{N}f_{a_i} i=1Nfai
  • 时间复杂度 O ( N + M a x { a i } ) O(N+Max\{a_i\}) O(N+Max{ai})

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 100005;
const int P = 1e9 + 7;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
int a[MAXN], f[MAXN];
int power(int x, int y) {
	if (y == 0) return 1;
	int tmp = power(x, y / 2);
	if (y % 2 == 0) return 1ll * tmp * tmp % P;
	else return 1ll * tmp * tmp % P * x % P;
}
int main() {
	int n; read(n);
	int sum = 0, Max = 0;
	for (int i = 1; i <= n; i++)
		read(a[i]), sum += a[i], chkmax(Max, a[i]);
	f[1] = (sum - 1ll) * (sum - 1ll) % P * power(sum, P - 2) % P;
	for (int i = 1; i < Max; i++)
		f[i + 1] = (2ll * f[i] - f[i - 1] - (sum - 1ll) * power(sum - i, P - 2) % P + 2 * P) % P;
	int ans = 0;
	for (int i = 1; i <= n; i++)
		ans = (ans + f[a[i]]) % P;
	writeln(ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值