【校内训练2019-01-21】最后之道

【思路要点】

  • 考虑容斥,一个显然的做法是暴力枚举 ( k 2 ) \binom{k}{2} (2k) 对点是否相等,将所有相等的点并在一起,可以用简单 O ( N ∗ k ) O(N*k) O(Nk) 的动态规划计算方案数,乘上容斥系数加入答案即可。
  • 可以发现,上述做法的动态规划部分的答案只与各个联通块的大小形成的可重集有关,有 O ( f ( k ) ) O(f(k)) O(f(k)) 种可能,其中 f ( k ) f(k) f(k) 表示 k k k 的整数拆分数。
  • 考虑枚举这个可重集,计算可能的连边方案及其容斥系数。
  • 假设该可重集为 a 1 , a 2 , a 3 , . . . , a m   ( a 1 ≤ a 2 ≤ a 3 ≤ . . . ≤ a m , a 1 + a 2 + a 3 + . . . + a m = k ) a_1,a_2,a_3,...,a_m\ (a_1≤a_2≤a_3≤...≤a_m,a_1+a_2+a_3+...+a_m=k) a1,a2,a3,...,am (a1a2a3...am,a1+a2+a3+...+am=k) ,可行的点的划分方案应当为 k ! ∏ c i ! ∏ a i ! \frac{k!}{\prod c_i!\prod a_i!} ci!ai!k! ,其中 c j c_j cj 表示等于 j j j a i a_i ai 个数。
  • 并且,我们需要使得各个联通块联通,令一个连边方案的权值为 − 1 -1 1 的边数次方,记 f i f_i fi 表示 i i i 个点的完全图,使得图联通的连边方案的权值和, g i g_i gi 表示所有连边方案的权值和,则有 g i = ( 1 − 1 ) ( i 2 ) = [ i = 1 ] , f i = 1 , f 2 = − 1 , f i = g i − ∑ j = 1 i − 1 ( i − 1 j − 1 ) f j ∗ g i − j   ( i ≥ 3 ) g_i=(1-1)^{\binom{i}{2}}=[i=1],f_i=1,f_2=-1,f_i=g_i-\sum_{j=1}^{i-1}\binom{i-1}{j-1}f_j*g_{i-j}\ (i≥3) gi=(11)(2i)=[i=1],fi=1,f2=1,fi=gij=1i1(j1i1)fjgij (i3) ,即 f i = ( − 1 ) i + 1 ( i − 1 ) ! f_i=(-1)^{i+1}(i-1)! fi=(1)i+1(i1)! ,那么可以得到可能的连边方案及其容斥系数的和为 k ! ∏ f a i ∏ c i ! ∏ a i ! \frac{k!\prod f_{a_i}}{\prod c_i!\prod a_i!} ci!ai!k!fai
  • 最终求得的方案数是无序的,需要将答案除去 k ! k! k!
  • 时间复杂度 O ( N ∗ k ∗ f ( k ) ) O(N*k*f(k)) O(Nkf(k)) ,其中 f ( 40 ) = 37338 f(40)=37338 f(40)=37338 ,大约可以在 30 s 30s 30s 内得出 N = 1 0 4 , k = 40 N=10^4,k=40 N=104,k=40 的答案。

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e4 + 5;
const int MAXK = 55;
const int P = 998244353;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
int n, k, ans, Max, cnt[MAXN], a[MAXK], dp[MAXK][MAXN];
int coef[MAXK], fac[MAXK], inv[MAXK], binom[MAXK][MAXK];
void update(int &x, int y) {
	x += y;
	if (x >= P) x -= P;
}
int getdp(int depth) {
	dp[0][0] = 1;
	for (int i = 1; i <= depth; i++) {
		memset(dp[i], 0, sizeof(dp[i]));
		static int tmp[MAXK];
		memset(tmp, 0, sizeof(tmp));
		for (int j = 0; j <= Max; j++) {
			update(tmp[j % a[i]], dp[i - 1][j]);
			dp[i][j] = tmp[j % a[i]];
		}
	}
	int ans = 1;
	for (int i = 1; i <= n; i++)
		ans = 1ll * ans * dp[depth][cnt[i]] % P;
	return ans;
}
int getcoef(int depth) {
	int ans = 1;
	for (int i = 1; i <= depth; i++)
		ans = 1ll * ans * inv[a[i]] % P * coef[a[i]] % P;
	int last = 0;
	a[depth + 1] = 0;
	for (int i = 1; i <= depth; i++)
		if (a[i] != a[i + 1]) {
			ans = 1ll * ans * inv[i - last] % P;
			last = i;
		}
	return ans;
}
void work(int lft, int depth, int last) {
	if (lft == 0) {
		update(ans, 1ll * getcoef(depth - 1) * getdp(depth - 1) % P);
		return;
	}
	if (last >= 2) work(lft, depth, last - 1);
	if (lft >= last) {
		a[depth] = last;
		work(lft - last, depth + 1, last);
	}
}
int power(int x, int y) {
	if (y == 0) return 1;
	int tmp = power(x, y / 2);
	if (y % 2 == 0) return 1ll * tmp * tmp % P;
	else return 1ll * tmp * tmp % P * x % P;
}
void calcoef() {
	int n = 40;
	for (int i = 0; i <= n; i++) {
		binom[i][0] = 1;
		for (int j = 1; j <= i; j++)
			binom[i][j] = (binom[i - 1][j - 1] + binom[i - 1][j]) % P;
	}
	fac[0] = inv[0] = 1;
	for (int i = 1; i <= n; i++) {
		fac[i] = 1ll * fac[i - 1] * i % P;
		inv[i] = power(fac[i], P - 2);
	}
	coef[1] = 1, coef[2] = P - 1;
	for (int i = 3; i <= n; i++) {
		int tans = 0;
		update(tans, P - 1ll * binom[i - 1][i - 2] * coef[i - 1] % P);
		coef[i] = tans;
	}
}
void calccnt() {
	for (int i = 1; i <= n; i++) {
		int tmp = i;
		for (int j = 2; j * j <= tmp; j++)
			while (tmp % j == 0) {
				tmp /= j;
				cnt[j]++;
			}
		if (tmp != 1) cnt[tmp]++;
	}
	for (int i = 1; i <= n; i++)
		chkmax(Max, cnt[i]);
}
int main() {
	freopen("final.in", "r", stdin);
	freopen("final.out", "w", stdout);
	read(n), read(k);
	calccnt();
	calcoef();
	work(k, 1, k);
	writeln(ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值