【LOJ3120】「CTS2019」珍珠

【题目链接】

【思路要点】

  • L i m = M i n { D , N − 2 M } Lim=Min\{D,N-2M\} Lim=Min{D,N2M}
  • 答案即为
    N ! ∑ i = 0 L i m ( e x + e − x 2 + y e x − e − x 2 ) D [ x N ] [ y i ] N!\sum_{i=0}^{Lim}(\frac{e^x+e^{-x}}{2}+y\frac{e^x-e^{-x}}{2})^D[x^N][y^i] N!i=0Lim(2ex+ex+y2exex)D[xN][yi]
    N ! 2 D ∑ i = 0 L i m ( e x ( 1 + y ) + e − x ( 1 − y ) ) D [ x N ] [ y i ] \frac{N!}{2^D}\sum_{i=0}^{Lim}(e^x(1+y)+e^{-x}(1-y))^D[x^N][y^i] 2DN!i=0Lim(ex(1+y)+ex(1y))D[xN][yi]
    N ! 2 D ∑ i = 0 L i m ∑ j = 0 D ( D j ) ( e x ( 1 + y ) ) j ( e − x ( 1 − y ) ) D − j [ x N ] [ y i ] \frac{N!}{2^D}\sum_{i=0}^{Lim}\sum_{j=0}^{D}\binom{D}{j}(e^x(1+y))^j(e^{-x}(1-y))^{D-j}[x^N][y^i] 2DN!i=0Limj=0D(jD)(ex(1+y))j(ex(1y))Dj[xN][yi]
    N ! 2 D ∑ j = 0 D ( D j ) e ( 2 j − D ) x [ x N ] ∑ i = 0 L i m ( 1 + y ) j ( 1 − y ) D − j [ y i ] \frac{N!}{2^D}\sum_{j=0}^{D}\binom{D}{j}e^{(2j-D)x}[x^N]\sum_{i=0}^{Lim}(1+y)^j(1-y)^{D-j}[y^i] 2DN!j=0D(jD)e(2jD)x[xN]i=0Lim(1+y)j(1y)Dj[yi]
    1 2 D ∑ j = 0 D ( D j ) ( 2 j − D ) N ∑ i = 0 L i m ( 1 + y ) j ( 1 − y ) D − j [ y i ] \frac{1}{2^D}\sum_{j=0}^{D}\binom{D}{j}(2j-D)^N\sum_{i=0}^{Lim}(1+y)^j(1-y)^{D-j}[y^i] 2D1j=0D(jD)(2jD)Ni=0Lim(1+y)j(1y)Dj[yi]
  • F ( D , j ) = ∑ i = 0 L i m ( 1 + y ) j ( 1 − y ) D − j [ y i ] F(D,j)=\sum_{i=0}^{Lim}(1+y)^j(1-y)^{D-j}[y^i] F(D,j)=i=0Lim(1+y)j(1y)Dj[yi]
  • 对于 j ≥ 1 j\geq1 j1 ,有
    F ( D , j ) = ∑ i = 0 L i m ( 1 + y ) j ( 1 − y ) D − j [ y i ] F(D,j)=\sum_{i=0}^{Lim}(1+y)^j(1-y)^{D-j}[y^i] F(D,j)=i=0Lim(1+y)j(1y)Dj[yi]
    = ∑ i = 0 L i m ( 1 + y ) j − 1 ( 2 − ( 1 − y ) ) ( 1 − y ) D − j [ y i ] =\sum_{i=0}^{Lim}(1+y)^{j-1}(2-(1-y))(1-y)^{D-j}[y^i] =i=0Lim(1+y)j1(2(1y))(1y)Dj[yi]
    = 2 F ( D − 1 , j − 1 ) − F ( D , j − 1 ) =2F(D-1,j-1)-F(D,j-1) =2F(D1,j1)F(D,j1)
  • 对于 j = 0 j=0 j=0 ,有
    F ( D , 0 ) = ∑ i = 0 L i m ( 1 − y ) D [ y i ] F(D,0)=\sum_{i=0}^{Lim}(1-y)^{D}[y^i] F(D,0)=i=0Lim(1y)D[yi]
    = ∑ i = 0 L i m ( D i ) ( − 1 ) i =\sum_{i=0}^{Lim}\binom{D}{i}(-1)^i =i=0Lim(iD)(1)i
    = ∑ i = 0 L i m ( ( D − 1 i ) + ( D − 1 i − 1 ) ) ( − 1 ) i =\sum_{i=0}^{Lim}(\binom{D-1}{i}+\binom{D-1}{i-1})(-1)^i =i=0Lim((iD1)+(i1D1))(1)i
    = ∑ i = 0 L i m ( − 1 ) i ( D − 1 i ) − ∑ i = 0 L i m − 1 ( − 1 ) i ( D − 1 i − 1 ) =\sum_{i=0}^{Lim}(-1)^i\binom{D-1}{i}-\sum_{i=0}^{Lim-1}(-1)^i\binom{D-1}{i-1} =i=0Lim(1)i(iD1)i=0Lim1(1)i(i1D1)
    = ( − 1 ) L i m ( D − 1 L i m ) =(-1)^{Lim}\binom{D-1}{Lim} =(1)Lim(LimD1)
  • 我们需要求出所有 F ( D , ∗ ) F(D,*) F(D,)
  • 上述转移斜向一步 × 2 \times2 ×2 ,正向一步 × − 1 \times-1 ×1
  • 可以用 N T T NTT NTT 优化。
  • 时间复杂度 O ( D L o g D + D L o g N ) O(DLogD+DLogN) O(DLogD+DLogN)

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 262144;
const int P = 998244353;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
namespace NTT {
	const int MAXN = 262144;
	const int P = 998244353;
	const int G = 3;
	int power(int x, int y) {
		if (y == 0) return 1;
		int tmp = power(x, y / 2);
		if (y % 2 == 0) return 1ll * tmp * tmp % P;
		else return 1ll * tmp * tmp % P * x % P;
	}
	int N, Log, home[MAXN];
	void NTTinit() {
		for (int i = 0; i < N; i++) {
			int ans = 0, tmp = i;
			for (int j = 1; j <= Log; j++) {
				ans <<= 1;
				ans += tmp & 1;
				tmp >>= 1;
			}
			home[i] = ans;
		}
	}
	void NTT(int *a, int mode) {
		for (int i = 0; i < N; i++)
			if (home[i] < i) swap(a[i], a[home[i]]);
		for (int len = 2; len <= N; len <<= 1) {
			int delta;
			if (mode == 1) delta = power(G, (P - 1) / len);
			else delta = power(G, P - 1 - (P - 1) / len);
			for (int i = 0; i < N; i += len) {
				int now = 1;
				for (int j = i, k = i + len / 2; k < i + len; j++, k++) {
					int tmp = a[j];
					int tnp = 1ll * a[k] * now % P;
					a[j] = (tmp + tnp) % P;
					a[k] = (tmp - tnp + P) % P;
					now = 1ll * now * delta % P;
				}
			}
		}
		if (mode == -1) {
			int inv = power(N, P - 2);
			for (int i = 0; i < N; i++)
				a[i] = 1ll * a[i] * inv % P;
		}
	}
	void times(int *a, int *b, int *c, int limit) {
		N = 1, Log = 0;
		while (N < 2 * limit) {
			N <<= 1;
			Log++;
		}
		for (int i = limit; i < N; i++)
			a[i] = b[i] = 0;
		NTTinit();
		NTT(a, 1);
		NTT(b, 1);
		for (int i = 0; i < N; i++)
			c[i] = 1ll * a[i] * b[i] % P;
		NTT(c, -1);
	}
}
int fac[MAXN], inv[MAXN];
int power(int x, int y) {
	if (y == 0) return 1;
	int tmp = power(x, y / 2);
	if (y % 2 == 0) return 1ll * tmp * tmp % P;
	else return 1ll * tmp * tmp % P * x % P;
}
int binom(int x, int y) {
	if (y > x) return 0;
	else return 1ll * fac[x] * inv[y] % P * inv[x - y] % P;
}
void init(int n) {
	fac[0] = 1;
	for (int i = 1; i <= n; i++)
		fac[i] = 1ll * fac[i - 1] * i % P;
	inv[n] = power(fac[n], P - 2);
	for (int i = n - 1; i >= 0; i--)
		inv[i] = inv[i + 1] * (i + 1ll) % P;
}
int d, n, m, lim;
int a[MAXN], b[MAXN], res[MAXN];
void update(int &x, int y) {
	x += y;
	if (x >= P) x -= P;
}
int main() {
	read(d), read(n), read(m);
	init(d), lim = min(d, n - 2 * m);
	a[d] = 1ll * power(2, d) * inv[d] % P, b[0] = 1;
	for (int i = 1; i <= d; i++) {
		if (i & 1) b[i] = P - inv[i];
		else b[i] = inv[i];
		if (lim & 1) a[d - i] = 1ll * (P - binom(i - 1, lim)) * inv[d - i] % P * power(2, d - i) % P;
		else a[d - i] = 1ll * binom(i - 1, lim) * inv[d - i] % P * power(2, d - i) % P;
	}
	NTT :: times(a, b, res, d + 1);
	for (int i = 0; i <= d; i++)
		res[i] = 1ll * res[i] * fac[i] % P;
	int ans = 0;
	for (int i = 0; i <= d; i++)
		update(ans, 1ll * power((2 * i - d + P) % P, n) * binom(d, i) % P * res[i] % P);
	ans = 1ll * ans * power(2, P - 1 - d) % P;
	writeln(ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值