【省内训练2019-06-05】序列计数

【思路要点】

  • 显然有矩阵乘法优化序列自动机 d p dp dp 的做法。
  • 考虑 A l A l + 1 … A r = A l − 1 − 1 … A 2 − 1 A 1 − 1 A 1 A 2 … A r A_lA_{l+1}\dots A_r=A_{l-1}^{-1}\dots A_2^{-1}A_1^{-1}A_1A_{2}\dots A_r AlAl+1Ar=Al11A21A11A1A2Ar ,因此只需考虑计算矩阵的前缀右乘和以及逆矩阵的前缀左乘和即可。
  • 注意到矩阵具有一定特殊性,右乘一个矩阵或左乘一个矩阵的逆均对应了一种初等变换,直接维护初等变换的结果即可。
  • 询问时我们只需要知道矩阵中的一个元素,暴力计算就行。
  • 时间复杂度 O ( N σ + M σ ) O(N\sigma+M\sigma) O(Nσ+Mσ)

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 5e5 + 5;
const int MAXC = 256;
const int MAXS = 11;
const int P = 1e9 + 7;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
int n, m, tot, a[MAXN];
char s[MAXN], num[MAXC];
long long A, B, C;
int mat[MAXN][MAXS], matex[MAXS][MAXS];
int inv[MAXN][MAXS], invex[MAXS][MAXS];
void init() {
	mat[0][0] = inv[0][0] = 1;
	for (int i = 1; i <= tot; i++) {
		matex[i][i] = 1;
		invex[i][i] = 1;
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 0; j <= tot; j++) {
			mat[i][j] = 2 * mat[i - 1][j];
			if (mat[i][j] >= P) mat[i][j] -= P;
			mat[i][j] += matex[a[i]][j];
			if (mat[i][j] >= P) mat[i][j] -= P;
			matex[a[i]][j] = P - mat[i - 1][j];
			if (matex[a[i]][j] >= P) matex[a[i]][j] -= P;
		}
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 0; j <= tot; j++) {
			inv[i][j] = invex[a[i]][j];
			invex[a[i]][j] = 2 * invex[a[i]][j] - inv[i - 1][j];
			if (invex[a[i]][j] < 0) invex[a[i]][j] += P;
			if (invex[a[i]][j] >= P) invex[a[i]][j] -= P;
		}
	}
}
int solve(int l, int r) {
	int ans = 0;
	for (int i = 0; i <= tot; i++)
		ans = (ans + 1ll * inv[l - 1][i] * mat[r][i]) % P;
	return (ans - 1 + P) % P;
}
int main() {
	scanf("%s", s + 1);
	n = strlen(s + 1), read(m);
	for (int i = 1; i <= n; i++) {
		if (num[s[i] - 0] == 0) num[s[i] - 0] = ++tot;
		a[i] = num[s[i] - 0];
	}
	init();
	for (int i = 1; i <= m; i++) {
		int l, r; read(l), read(r);
		long long ans = solve(l, r);
		writeln(ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值