系统分析 BAGAN: Data Augmentation with Balancing GAN

 前一段时间研究了BAGAN这篇论文,我这里尝试着用最近接触的系统性的方法来阐述一下我对这篇文章的理解。我将从以下几个方面来进行分析:
(1)这篇文章解决了一个什么问题
(2)为何之前这个问题没有解决或者说这个问题的难点在哪里
(3)在这之前的解决方案有什么,作者的工作与前人相比好在哪里
(4)空口无凭,实验结果展示
(5)对整个实验的评估

1、文章解决掉的问题

 本文提出,在图像分类任务当中,我们的数据集经常是不平衡的,而这种不平衡性往往会降低分类的准确性。所以本文提出了balancing GAN(BAGAN)作为一种增强工具来恢复数据集的平衡性,以便提高分类的准确性。

2、问题的难点

 问题的难点在于我们想要生成不平衡数据集中样本数量少的类别数据,首先在GAN网络之前,我们通常会对数据做一些几何变换来增强数据集,但是这种方法遇到一些与方向性相关的数据集时,效果往往会特别不好。其次当我们使用GAN网络的时候,由于特定类别数据量较少,很难很好地训练一个GAN网络来生成数据。

3、问题的解决方案

(1)前人的工作
 由于几何变换方法的局限性,我们在这里不予以讨论。我们重点讨论GAN网络之前的工作。其实为了生成特定类别的样本,前人已经做出了一系列的工作,例如cGAN、ACGAN等。本文在我看来实际上是对ACGAN的一种改进,首先我们来看一下两者的结构图

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值