改进DCGAN数据增强的生活垃圾图像识别

摘要

为解决当前生活垃圾分类领域数据集存在的图像质量不高、类别分布不均衡的问题,提出一种基于改进DCGAN数据增强的垃圾图像生成方法EW_DCGAN。首先重新设计DCGAN的网络结构,将生成器输出图像的大小调整至128×128像素;其次将损失函数BCE Loss替换为具有Wasserstein距离的损失函数,引入梯度惩罚项提升模型判别器的鉴别能力;最后在模型生成器中加入ECA注意力机制,使其能较好地应对图像中无效信息的干扰,进而高效提取有用特征。实验表明,使用EW_DCGAN生成的图像质量较高,FID值相较于仅使用DCGAN生成的图像下降明显,能扩充、增强垃圾分类领域数据集。基于迁移学习的ResNet、MobileNet、EfficientNet神经网络在增强前、后的数据集上的比较发现,模型的准确率相较于原始数据集分别提升7.09%、5.34%、4.8%。

关键词

深度卷积生成对抗网络; 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值