GAN汇总

本文介绍了多种使用GAN(生成对抗网络)的技术,从3D形状重建到图像编辑,包括3D-ED-GAN、3D-GAN、3D-RecGAN等,展示了GAN在3D对象生成和图像处理领域的广泛应用和最新进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 生成对抗网络 (GAN) 的各种变体及其最新进展 #### 条件生成对抗网络 (Conditional GANs, cGAN) 条件生成对抗网络扩展了标准 GAN 架构,在输入到生成器和判别器的数据中加入了额外的信息,如类别标签或其他模态的数据。这使得模型能够根据给定条件生成特定类型的图像或数据[^1]。 ```python import torch.nn as nn class ConditionalGenerator(nn.Module): def __init__(self, input_dim, condition_dim, output_dim): super().__init__() self.model = nn.Sequential( nn.Linear(input_dim + condition_dim, 256), nn.ReLU(), ... nn.Tanh() ) def forward(self, noise, conditions): gen_input = torch.cat((noise, conditions), dim=1) return self.model(gen_input) ``` #### 边界寻求生成对抗网络 (Boundary Seeking GAN, BGAN) BGAN 提出了一个新的目标函数来减少生成样本的质量差异,使生成器更关注于那些接近真实数据分布边界的样本。这种方法有助于提高生成图片的真实性和多样性[^3]。 #### 虚假损失最小化生成对抗网络 (Least Squares GAN, LSGAN) LSGAN 使用平方误差作为损失函数代替传统的交叉熵损失,旨在让生成器产生的样本尽可能靠近真实的平均值而不是仅仅试图欺骗判别器。这种变化可以改善训练稳定性并获得更好的视觉效果。 #### 对抗自动编码器 (Adversarial Autoencoders, AAE) AAE 结合了自编码器的思想与 GAN 的结构,其中编码部分用于映射高维观测空间至低维潜在变量空间;解码/生成过程则负责重建原始输入或创建相似的新实例。该架构不仅可用于降噪、去模糊等任务,还支持无监督表示学习。 #### Wasserstein GAN (WGAN) 为了克服传统 GAN 训练过程中存在的模式崩溃问题以及梯度消失现象,Wasserstein GAN 引入了 Earth Mover's Distance(EMD),即 Wasserstein distance 或 Kantorovich-Rubinstein norm,作为一种衡量两概率分布之间距离的方式。相比 Kullback-Leibler divergence 和 Jensen-Shannon divergence 更加平滑连续,有利于稳定收敛性能提升[^2]。 #### BigGAN BigGAN 是一种大规模多尺度卷积神经网路构成的大规模图像合成系统,利用谱归一化技术防止过拟合并增强泛化能力。此外,BigGAN 还引入了截断技巧以控制生成质量与多样性的平衡关系,成为当前最先进水平之一的图像生成算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蹦跶的小羊羔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值