女神和吊丝:从贝叶斯公式看经验学习——贝叶斯理论(1)

贝叶斯公式是:

P(A_{i}/B) = \frac{P(A_{i}B)}{P(B)} = \frac{P(A_{i})P(B/A_{i})}{\sum_{j=1}^{n}P(A_{j})P(B/A_{j})}

怎样深刻理解这个公式而不是死记硬背呢?

回答这个问题首先要弄明白贝叶斯公式到底要达到什么目的。贝叶斯公式要达到的目的是实现经验学习,也就是说,根据现有的经验调整人们对不同事物发生概率的预期。

举个栗子:女神到底喜不喜欢你呢?根据贝叶斯理论,先要搞清楚女神喜欢一个吊丝的先验概率,即上面公式中的P(A_{1}),这里假设P(A_{1})是女神喜欢屌丝的概率,P(A_{2}) = 1-P(A_{1})是她不喜欢吊丝的概率。

什么是先验概率,就是在没有任何表现或者证据情况下的事物的概率。拿上面的例子来说就是统计全社会所有女神,看看她们中间喜欢吊丝的有多少从而计算出来的概率。这个概率代表的是一般性的情况,是有新的证据和表现出现之前的概率,所以称为“先”验概率。

与之相对应的就是后验概率。比如说女神喜欢吊丝的先验概率P(A_{1}) = 0.0000001,但是今天女神忽然对你笑了一下,这是一个新的现象和证据,她喜欢你的概率还会是0.0000001吗?当然不是,你应该根据新的情况调整女神喜欢你的概率,这个概率就称为后验概率。因为它发生在新证据、新情况、新表现出现之后,所以称为“后”验概率。

所以所谓先验概率、后验概率,指的是同一个事物在现象发生之前以及之后的概率。从先验概率发展到后验概率代表了人类不断调整自己认识的过程。

那后验概率怎么计算呢?贝叶斯公式就是解决这个问题。现在女神对你笑了,你要统计或者计算以下两个条件概率:

  1. 女神喜欢你的情况下,对你笑的概率即P(B/A_{1}),假设是0.9999。这个概率称为条件概率,它指的是在某个条件下某个事物发生的概率。
  2. 女神不喜欢你的情况下,对你笑的概率即P(B/A_{2}),假设是0.002,也就是说,如果女神不喜欢你,她会很少对你笑的。但偶尔可能也会笑一下,比如你表现的非常像郭德纲。

 有了这两个条件概率,就可以计算两个联合概率P(A_{1}B)P(A_{2}B),方法是分别用先验概率乘以相应的条件概率即可:

P(A_{1}B) = P(A_{1})P(B/A_{1})

P(A_{2}B) = P(A_{2})P(B/A_{2})

 有了这两个联合概率,你最关心的后验概率P(A_{1}/B)即女神对你笑了一下情况下她喜欢你的概率:

 P(A_{1}/B) = \frac{P(A_{1}B)}{P(A_{1}B) + P(A_{2}B)} = \frac{0.0000001\times 0.9999}{0.0000001\times 0.9999+0.999999999*0.002} =0.00005

也就是说,女神喜欢你的后验概率是十万分之五。这个概率虽然仍然很小(只有2万次女神对你笑才代表了她喜欢你),但是比先验概率0.0000001大500倍,也就是说,你比一般吊丝被女神看上的机会大了500倍,还是可喜可贺的。

这就是贝叶斯公式及其所代表的经验学习的本质。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

方林博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值