贝叶斯公式是:
怎样深刻理解这个公式而不是死记硬背呢?
回答这个问题首先要弄明白贝叶斯公式到底要达到什么目的。贝叶斯公式要达到的目的是实现经验学习,也就是说,根据现有的经验调整人们对不同事物发生概率的预期。
举个栗子:女神到底喜不喜欢你呢?根据贝叶斯理论,先要搞清楚女神喜欢一个吊丝的先验概率,即上面公式中的,这里假设是女神喜欢屌丝的概率,是她不喜欢吊丝的概率。
什么是先验概率,就是在没有任何表现或者证据情况下的事物的概率。拿上面的例子来说就是统计全社会所有女神,看看她们中间喜欢吊丝的有多少从而计算出来的概率。这个概率代表的是一般性的情况,是有新的证据和表现出现之前的概率,所以称为“先”验概率。
与之相对应的就是后验概率。比如说女神喜欢吊丝的先验概率,但是今天女神忽然对你笑了一下,这是一个新的现象和证据,她喜欢你的概率还会是0.0000001吗?当然不是,你应该根据新的情况调整女神喜欢你的概率,这个概率就称为后验概率。因为它发生在新证据、新情况、新表现出现之后,所以称为“后”验概率。
所以所谓先验概率、后验概率,指的是同一个事物在现象发生之前以及之后的概率。从先验概率发展到后验概率代表了人类不断调整自己认识的过程。
那后验概率怎么计算呢?贝叶斯公式就是解决这个问题。现在女神对你笑了,你要统计或者计算以下两个条件概率:
- 女神喜欢你的情况下,对你笑的概率即,假设是0.9999。这个概率称为条件概率,它指的是在某个条件下某个事物发生的概率。
- 女神不喜欢你的情况下,对你笑的概率即,假设是0.002,也就是说,如果女神不喜欢你,她会很少对你笑的。但偶尔可能也会笑一下,比如你表现的非常像郭德纲。
有了这两个条件概率,就可以计算两个联合概率和,方法是分别用先验概率乘以相应的条件概率即可:
有了这两个联合概率,你最关心的后验概率即女神对你笑了一下情况下她喜欢你的概率:
也就是说,女神喜欢你的后验概率是十万分之五。这个概率虽然仍然很小(只有2万次女神对你笑才代表了她喜欢你),但是比先验概率0.0000001大500倍,也就是说,你比一般吊丝被女神看上的机会大了500倍,还是可喜可贺的。
这就是贝叶斯公式及其所代表的经验学习的本质。