最短路问题

最短路问题

题目描述

n个点m条边的有向图,每条边都有边权,边权为经过这条边需要花费的时间,只能从编号小的点走到编号大的点,求从1号点走到n号点所花费最少的时间

思路

这是一道经典动态规划题目,可以分析出只需要考虑到达每个点最短的时间。

然后可以得出一个递推关系式:到达第n个点的最短距离为在所有能够到达第n个点的上一个点的最短距离加上上一个点到第n个点的距离最小,那么就走这一条路。

AC代码

#include <bits/stdc++.h>

const int MX = 1005;
int x[MX][MX], dp[MX];

int main() {
    int n, m;
    std::cin >> n >> m;
    
    for(int i = 1; i <= m; i++) {
        int u, v ,w;
        std::cin >> u >> v >> w;
        x[v][u] = w;
    }
    for(int i = 2; i <= n; i++) {
        int s = 100000005;
        for(int j = 1; j < i; j++) {
            if(x[i][j]) {
                if(x[i][j] + dp[j] < s) {
                    s = x[i][j] + dp[j];
                }
            }
        }
        dp[i] = s;
    }
    std::cout << dp[n] << "\n";
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值