矩阵分析笔记

1.线性映射与线性变换在某基下的矩阵表示为A,特征值和特征向量意味着线性变换对特征向量进行操作不改变此向量所在的方向,并且可以通过分析矩阵A的特征值和特征向量的分布情况分析,特征空间中的对线性变换的不变线性子空间线性变换所对应的矩阵为A,对A进行相似变换得到B=P-1AP,则B为此线性换在另一组基上的矩阵表示,且两组基的过度矩阵为P。新的一组基=老的一组基*P线行变换的特征值和特征向量不随所选取基底的变化而变化。矩阵可相似对角化的条件是此矩阵的每一个特征值的代数重数等于几何重数, 矩阵可相似..
摘要由CSDN通过智能技术生成

1.线性映射与线性变换在某基下的矩阵表示为A,特征值和特征向量意味着线性变换对特征向量进行操作不改变此向量所在的方向,并且可以通过分析矩阵A的特征值和特征向量的分布情况分析,特征空间中的对线性变换的不变线性子空间

线性变换所对应的矩阵为A,对A进行相似变换得到B=P-1AP,则B为此线性换在另一组基上的矩阵表示,且两组基的过度矩阵为P。新的一组基=老的一组基*P  

线行变换的特征值和特征向量不随所选取基底的变化而变化。

矩阵可相似对角化的条件是此矩阵的每一个特征值的代数重数等于几何重数, 矩阵可相似对角化也意味着矩阵是满秩的, 如果线性变换所对应的矩阵A可相似对角化,那么意味着真个线性空间是此线性变换的线性不变子空间。

如果此矩阵不能相似对角化,那么可以相似成Jordan矩阵,根据其相似的Jordan矩阵可对此线性变换的线行不变子空间进行分析。

可以通过求矩阵A的初等因子,然后直接写出矩阵A对应的Jordan矩阵,矩阵A可对角化的充要条件是此矩阵的初等因子的都是一次的。

相似矩阵的求法  可以直接设P=[x1,x2,……,xn]硬算,也可以根据Jordan矩阵的块的维数对矩阵P进行分块求解,产生许多个方程组,但是每一个方程组的解需要进行人为控制使方程组有解。

      求Jordan矩阵时,需要引入λ矩阵进行分析,λ矩阵的Smith标准型是唯一的,不变因子唯一,相互等价的λ矩阵的各阶行列式因子相等。

     两个λ矩阵等价的充要条件是它们的的不变因子相同,或各阶行列式相等,或秩相等且初等因子相等。 

     两个矩阵相似的充要条件是λ𝐸−𝐴~(𝜆𝐸−𝐵),或λ𝐸−𝐴≃𝜆𝐸−𝐵,所以两矩阵相似的充要条件是两矩阵具有相同的不变因子,但是因为λ𝐸−𝐴与𝜆𝐸−𝐵肯定满秩,即秩相等,所以λ𝐸−𝐴≃𝜆𝐸−𝐵的充要条件是具有相等的初等因子即可。

1.基{𝛼𝑖}的度量矩阵

2.Hermite矩阵  𝐴𝐻=𝐴 酉空间的度量矩阵是Hermite矩阵,欧式空间的度量矩阵是实对称矩阵,实对称矩阵是Hermite矩阵

3.反Hermite矩阵 𝐴𝐻=−𝐴 

4.酉矩阵   𝐴𝐴𝐻=𝐴𝐻𝐴=𝐸   则   𝐴𝐻=𝐴−1

 设𝐀∈𝑪𝒏×𝒏,则A是酉

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值