# tensorflow实战之验证码识别

### 1.代码:

from captcha.image import ImageCaptcha
import matplotlib.pyplot as plt
from PIL import Image
import random
import tensorflow as tf
import numpy as np

numbers = ['0','1','2','3','4','5','6','7','8','9']
lower_case_letter = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
upper_case_letter = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']

char_set=numbers

#随机生成验证码文字
text=""
c=random.choice(char_set)
text+=c
return text

#RGB图转灰度图
def convert2gray(img):
#print(img.shape)
if len(img.shape)>2:
gray=np.mean(img,2)
# 上面的转法较快，正规转法如下
# r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
# gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
#Image.fromarray(gray,'L').save(text+'.jpg')
return gray
else:
return img

#文本转向量
def text2vector(text):
raise Exception("验证码超出最大长度")

"""
ascll值
0-9(0-9): 48-57
A-Z(10-35): 65-90
a-z(36-61): 97-122
"""
def char2pos(c):
if c =='_':
k = 62
return k
k = ord(c)-48
if k > 9:#字母
k = ord(c) - 55
if k > 35:#小写字母
k = ord(c) - 61
if k > 61:
raise ValueError('No Map')
return k

for i,c in enumerate(text):
vector[idx]=1
return vector

#向量转回文本
def vec2text(vec):
char_pos = vec.nonzero()[0]
text=[]
for i, c in enumerate(char_pos):
char_at_pos = i #c/63
char_idx = c % len(char_set)
if char_idx < 10:
char_code = char_idx + ord('0')
elif char_idx <36:
char_code = char_idx - 10 + ord('A')
elif char_idx < 62:
char_code = char_idx-  36 + ord('a')
elif char_idx == 62:
char_code = ord('_')
else:
raise ValueError('error')
text.append(chr(char_code))
return "".join(text)

# 生成一个训练batch
def get_next_batch(batch_size=128):
batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
batch_y = np.zeros([batch_size, MAX_CAPTCHA * len(char_set)])

# 有时生成图像大小不是(60, 160, 3)
while True:
if image.shape == (60, 160, 3):
return text, image

for i in range(batch_size):
image = convert2gray(image)

batch_x[i, :] = image.flatten() / 255  # (image.flatten()-128)/128  mean为0
batch_y[i, :] = text2vector(text)
return batch_x, batch_y

#定义CNN
x=tf.reshape(X,(-1,IMAGE_HEIGHT,IMAGE_WIDTH,1))

"""
X:60*160*1

layer1:3*3*1 -> 32
pool1:2*2 -> 30*80
layer2:3*3*32 -> 64
pool2:2*2 -> 15*40
layer3:3*3*64 -> 64
pool3:2*2 -> 8*20(SAME)
full:8*20

Y:40*1
"""
w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv1 = tf.nn.dropout(conv1, keep_prob)

w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv2 = tf.nn.dropout(conv2, keep_prob)

w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv3 = tf.nn.dropout(conv3, keep_prob)

# Fully connected layer
w_d = tf.Variable(w_alpha * tf.random_normal([8 * 20 * 64, 1024]))
b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
dense = tf.nn.dropout(dense, keep_prob)

w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * len(char_set)]))
b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * len(char_set)]))
# out = tf.nn.softmax(out)
return out

saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, "./model/crack_capcha.model-810")

predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA , len(char_set)]), 2)
text_list,out = sess.run([predict,output], feed_dict={X: [captcha_image], keep_prob: 1})
print(out)
text = text_list[0].tolist()
return text

# 训练

loss=tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=out,labels=Y))

#1*40 -> 4*10
predict = tf.reshape(out, [-1, MAX_CAPTCHA, len(char_set)])
max_idx_p = tf.argmax(predict, 2)
max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, len(char_set)]), 2)
correct_pred = tf.equal(max_idx_p, max_idx_l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())

step=0
while True:
batch_x, batch_y = get_next_batch(64)
_,loss_=sess.run([optimizer, loss],feed_dict={X:batch_x,Y:batch_y,keep_prob:0.75})
#print(step, loss_)
# 每100 step计算一次准确率
if step % 10 == 0:
batch_x_test, batch_y_test = get_next_batch(100)
acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
print(step, acc)
# 如果准确率大于50%,保存模型,完成训练
if acc > 0.80:
saver.save(sess, "./model/crack_capcha.model", global_step=step)
break
step += 1

"""
X:60*160*1

Y:4*10

"""
if __name__ == '__main__':

train=0

if train==1:
IMAGE_WIDTH = 160
IMAGE_HEIGHT = 60

X = tf.placeholder(tf.float32, (None, IMAGE_WIDTH * IMAGE_HEIGHT))
Y = tf.placeholder(tf.float32, (None, MAX_CAPTCHA * len(char_set)))
keep_prob = tf.placeholder(tf.float32)  # dropout

else:
IMAGE_WIDTH = 160
IMAGE_HEIGHT = 60
image=convert2gray(image)
image = image.flatten() / 255

X = tf.placeholder(tf.float32, (None, IMAGE_WIDTH * IMAGE_HEIGHT))
Y = tf.placeholder(tf.float32, (None,MAX_CAPTCHA * len(char_set)))
keep_prob = tf.placeholder(tf.float32)  # dropout