基于yolov8的检测分割跟踪软件系统(含Pyqt界面,附下载链接和演示视频,集成四种多目标跟踪算法,模型已训好)

在这里插入图片描述

1、前言

本文重点介绍了基于YOLOv8目标检测分割跟踪系统的代码实现,用于智能检测物体种类并记录和保存结果,对各种物体检测结果可视化,提高目标识别的便捷性和准确性。数据集采用COCO,即可针对COCO的80类目标进行检测分割跟踪。

本文详细阐述了目标检测分割跟踪系统的原理,并给出python的实现代码、训练模型,以及GUI界面设计。基于YOLOv8目标检测分割跟踪算法,在界面中可以选择各种图片、视频进行检测识别分割跟踪。博文提供了完整的python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。

针对不同用户需求,也进行了功能拆分,分别实现了基于yolov8的检测版本、检测分割版本、检测跟踪版本、检测分割跟踪完整版本。

2、实现原理

检测分割采用yolov8算法模型,跟踪算法集成了strongsort、OCSort、botSort、bytetrack等四种方法。

(1)yolov8

不同yolo版本对比:
在这里插入图片描述

YOLOv8 是由 YOLOv5 的发布者 Ultralytics 发布的最新版本的 YOLO。它可用于对象检测、分割、分类任务以及大型数据集的学习,并且可以在包括 CPU 和 GPU 在内的各种硬件上执行。

YOLOv8是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新的功能和改进,以进一步提高性能和灵活性。YOLOv8 旨在快速、准确且易于使用,这也使其成为对象检测、图像分割和图像分类任务的绝佳选择。具体创新包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,还支持YOLO以往版本,方便不同版本切换和性能对比。

YOLOv8 有 5 个不同模型大小的预训练模型:n、s、m、l 和 x。关注下面的参数个数和COCO mAP(准确率),可以看到准确率比YOLOv5有了很大的提升。特别是 l 和 x,它们是大模型尺寸,在减少参数数量的同时提高了精度。
在这里插入图片描述
每个模型的准确率如下
在这里插入图片描述
在这里插入图片描述

1)YOLOv8 概述

YOLOv8 算法的核心特性和改动可以归结为如下:

提供了一个全新的 SOTA 模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求

Backbone:
骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数。

属于对模型结构精心微调,不再是无脑一套参数应用所有模型,大幅提升了模型性能。不过这个 C2f 模块中存在 Split 等操作对特定硬件部署没有之前那么友好了

Head: Head部分较yolov5而言有两大改进:1)换成了目前主流的解耦头结构(Decoupled-Head),将分类和检测头分离 2)同时也从 Anchor-Based 换成了 Anchor-Free

Loss :1) YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner正负样本匹配方式。2)并引入了 Distribution Focal Loss(DFL)

Train:训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

从上面可以看出,YOLOv8 主要参考了最近提出的诸如 YOLOX、YOLOv6、YOLOv7 和 PPYOLOE 等算法的相关设计,本身的创新点不多,偏向工程实践,主推的还是 ultralytics 这个框架本身。

下面将按照模型结构设计、Loss 计算、训练数据增强、训练策略和模型推理过程共 5 个部分详细介绍 YOLOv8 目标检测的各种改进。

2)模型结构设计

在这里插入图片描述
骨干网络和 Neck 的具体变化为:

  • 第一个卷积层的 kernel 从 6x6 变成了 3x3
  • 所有的 C3 模块换成 C2f,可以发现多了更多的跳层连接和额外的Split 操作
  • 去掉了 Neck 模块中的 2 个卷积连接层
  • Backbone 中 C2f 的block 数从 3-6-9-3 改成了 3-6-6-3
  • 查看 N/S/M/L/X 等不同大小模型,可以发现 N/S 和 L/X 两组模型只是改了缩放系数,但是 S/M/L 等骨干网络的通道数设置不一样,没有遵循同一套缩放系数。如此设计的原因应该是同一套缩放系数下的通道设置不是最优设计,YOLOv7 网络设计时也没有遵循一套缩放系数作用于所有模型.

Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。

3)Loss 计算

Loss 计算过程包括 2 个部分: 正负样本分配策略和 Loss 计算。

现代目标检测器大部分都会在正负样本分配策略上面做文章,典型的如 YOLOX 的 simOTA、TOOD 的 TaskAlignedAssigner 和 RTMDet 的 DynamicSoftLabelAssigner,这类 Assigner 大都是动态分配策略,而 YOLOv5 采用的依然是静态分配策略。考虑到动态分配策略的优异性,YOLOv8 算法中则直接引用了 TOOD 的 TaskAlignedAssigner。

TaskAlignedAssigner 的匹配策略简单总结为: 根据分类与回归的分数加权的分数选择正样本。

对于每一个 GT,对所有的预测框基于 GT 类别对应分类分数,预测框与 GT 的 IoU 的加权得到一个关联分类以及回归的对齐分数 alignment_metrics

对于每一个 GT,直接基于 alignment_metrics 对齐分数选取 topK 大的作为正样本

Loss 计算包括 2 个分支: 分类和回归分支,没有了之前的 objectness 分支。

  • 分类分支依然采用 BCE Loss
  • 回归分支需要和 Distribution Focal Loss 中提出的积分形式表示法绑定,因此使用了
    Distribution Focal Loss, 同时还使用了 CIoU Loss

3 个 Loss 采用一定权重比例加权即可。

4)训练数据增强

数据增强方面和 YOLOv5 差距不大,只不过引入了 YOLOX 中提出的最后 10 个 epoch 关闭 Mosaic 的操作。假设训练 epoch 是 500,其示意图如下所示:
在这里插入图片描述
考虑到不同模型应该采用的数据增强强度不一样,因此对于不同大小模型,有部分超参会进行修改,典型的如大模型会开启 MixUp 和 CopyPaste。数据增强后典型效果如下所示:

在这里插入图片描述

5)训练策略

YOLOv8 的训练策略和 YOLOv5 没有啥区别,最大区别就是模型的训练总 epoch 数从 300 提升到了 500,这也导致训练时间急剧增加。以 YOLOv8-S 为例,其训练策略汇总如下:
在这里插入图片描述

6)模型推理过程

YOLOv8 的推理过程和 YOLOv5 几乎一样,唯一差别在于前面需要对 Distribution Focal Loss 中的积分表示 bbox 形式进行解码,变成常规的 4 维度 bbox,后续计算过程就和 YOLOv5 一样了。
在这里插入图片描述
其推理和后处理过程为:

(1) bbox 积分形式转换为 4d bbox 格式
对 Head 输出的 bbox 分支进行转换,利用 Softmax 和 Conv 计算将积分形式转换为 4 维 bbox 格式
(2) 维度变换
YOLOv8 输出特征图尺度为 80x80、40x40 和 20x20 的三个特征图。Head 部分输出分类和回归共 6 个尺度的特征图。
将 3 个不同尺度的类别预测分支、bbox 预测分支进行拼接,并进行维度变换。为了后续方便处理,会将原先的通道维度置换到最后,类别预测分支 和 bbox 预测分支 shape 分别为 (b, 80x80+40x40+20x20, 80)=(b,8400,80),(b,8400,4)。
(3) 解码还原到原图尺度
分类预测分支进行 Sigmoid 计算,而 bbox 预测分支需要进行解码,还原为真实的原图解码后 xyxy 格式。
(4) 阈值过滤
遍历 batch 中的每张图,采用 score_thr 进行阈值过滤。在这过程中还需要考虑 multi_label 和 nms_pre,确保过滤后的检测框数目不会多于 nms_pre。
(5) 还原到原图尺度和 nms
基于前处理过程,将剩下的检测框还原到网络输出前的原图尺度,然后进行 nms 即可。最终输出的检测框不能多于 max_per_img。

有一个特别注意的点:YOLOv5 中采用的 Batch shape 推理策略,在 YOLOv8 推理中暂时没有开启,不清楚后面是否会开启,在 MMYOLO 中快速测试了下,如果开启 Batch shape 会涨大概 0.1~0.2。

7) 特征图可视化

MMYOLO 中提供了一套完善的特征图可视化工具,可以帮助用户可视化特征的分布情况。

以 YOLOv8-s 模型为例,第一步需要下载官方权重,然后将该权重通过https://github.com/open-mmlab/mmyolo/blob/dev/tools/model_converters/yolov8_to_mmyolo.py 脚本将去转换到 MMYOLO 中,注意必须要将脚本置于官方仓库下才能正确运行,假设得到的权重名字为 mmyolov8s.pth

假设想可视化 backbone 输出的 3 个特征图效果,则只需要

cd mmyolo # dev 分支
python demo/featmap_vis_demo.py demo/demo.jpg configs/yolov8/yolov8_s_syncbn_fast_8xb16-500e_coco.py mmyolov8s.pth --channel-reductio squeeze_mean

需要特别注意,为了确保特征图和图片叠加显示能对齐效果,需要先将原先的 test_pipeline 替换为如下:

test_pipeline = [
    dict(
        type='LoadImageFromFile',
        file_client_args=_base_.file_client_args),
    dict(type='mmdet.Resize', scale=img_scale, keep_ratio=False), # 这里将 LetterResize 修改成 mmdet.Resize
    dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
    dict(
        type='mmdet.PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]

在这里插入图片描述
从上图可以看出不同输出特征图层主要负责预测不同尺度的物体。

我们也可以可视化 Neck 层的 3 个输出层特征图:

cd mmyolo # dev 分支
python demo/featmap_vis_demo.py demo/demo.jpg configs/yolov8/yolov8_s_syncbn_fast_8xb16-500e_coco.py mmyolov8s.pth --channel-reductio squeeze_mean --target-layers neck

在这里插入图片描述
从上图可以发现物体处的特征更加聚焦。

(2)strongsort

(3)OCSort

(4)botSort

(5)bytetrack

3、实现步骤(待补充完善)

(1)注册登录界面

(2)检测分割跟踪界面

(3)导入检测和跟踪模型

在这里插入图片描述
在这里插入图片描述

(4)打开图片、视频和摄像头

(5)实现逻辑

4、演示视频

完整版本
https://live.csdn.net/v/283024?spm=1001.2014.3001.5501
拆分版本在界面中仅有相关算法的功能。
在这里插入图片描述

5、下载链接

针对不同用户需求,发布了四个版本,基于yolov8的纯检测界面、基于yolov8的检测分割界面、基于yolov8和四种跟踪方法的检测跟踪界面、基于yolov8和四种跟踪方法的检测分割跟踪完整界面。

6、小结

由于博主能力有限,博文中提及的方法即使经过试验,也难免会有疏漏之处。希望您能热心指出其中的错误,以便下次修改时能以一个更完美更严谨的样子,呈现在大家面前。同时如果有更好的实现方法也请您不吝赐教。

参考链接:https://zhuanlan.zhihu.com/p/630076321

  • 6
    点赞
  • 46
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
基于YOLOv8的细胞检测计数系统源码(部署教程+训练好的模型+各项评估指标曲线).zip 平均准确率:0.98 类别:RBC、WBC、platelets 【资源介绍】 1、ultralytics-main ultralytics-main为YOLOv8源代码,里面涵盖基于yolov8分类、目标检测额、姿态估计、图像分割四部分代码,我们使用的是detect部分,也就是目标检测代码 2、搭建环境 安装anaconda 和 pycharm windows系统、mac系统、Linux系统都适配 在anaconda中新建一个新的envs虚拟空间(可以参考博客来),命令窗口执行:conda create -n YOLOv8 python==3.8 创建完YOLOv8-GUI虚拟空间后,命令窗口执行:source activate YOLOv8 激活虚拟空间 然后就在YOLOv8虚拟空间内安装requirements.txt中的所有安装包,命令窗口执行:pip install -r requirements.txt 使用清华源安装更快 3、训练模型过程 进入到\ultralytics-main\ultralytics\yolo\v8\detect\文件夹下,datasets即为我们需要准备好的数据集,训练其他模型同理。 data文件夹下的bicycle.yaml文件为数据集配置文件,该文件为本人训练自行车检测模型时创建,训练其他模型,可自行创建。博文有介绍https://blog.csdn.net/DeepLearning_?spm=1011.2415.3001.5343 train.py中238行,修改为data = cfg.data or './bicycle.yaml' # or yolo.ClassificationDataset("mnist") 237行修改自己使用的预训练模型 若自己有显卡,修改239行,如我有四张显卡,即改成args = dict(model=model, data=data, device=”0,1,2,3“) 以上配置完成后运行train.py开始训练模型,训练完毕后会在runs/detect/文件夹下生成train*文件夹,里面包模型和评估指标等 4、推理测试 训练好模型,打开predict.py,修改87行,model = cfg.model or 'yolov8n.pt',把yolov8n.pt换成我们刚才训练完生成的模型路径(在\ultralytics-main\ultralytics\yolo\v8\detect\runs\detect文件夹下),待测试的图片或者视频存放于ultralytics\ultralytics\assets文件夹, 运行predict.py即可,检测结果会在runs/detect/train文件夹下生成。
基于YOLOv8+pyqt5实现的过马路玩手机打电话检测告警系统源码(GUI界面+数据集+模型+评估曲线+部署说明) 检测斑马线、玩手机、打电话、行人、车辆、其他。简易的GUI界面有训练好的模型、评估指标曲线、数据集、详细部署操作文档,有问题可以私信留言。 以下内容为项目部署详细过程和说明 1、项目代码分为两部分 main_gui_code和ultralytics,其中main_gui_code代码包GUI界面代码+训练好的模型+YOLOv8推理逻辑融合GUI的代码,也就是说这部分可以打开GUI界面,加载模型和图片、视频视频流 进行测试。ultralytics则为YOLOv8源代码,可用来训练各种模型,当然也可以用来测试,输出结果,只不过不带GUI界面。故我们使用ultralytics来训练模型,然后拷贝模型到main_gui_code中, 进行GUI界面测试。 2、搭建环境 安装anaconda 和 pycharm windows系统、mac系统、Linux系统都适配 在anaconda中新建一个新的envs虚拟空间(可以参考博客来),命令窗口执行:conda create -n YOLOv8-GUI python==3.8 创建完YOLOv8-GUI虚拟空间后,命令窗口执行:source activate YOLOv8-GUI 激活虚拟空间 然后就在YOLOv8-GUI虚拟空间内安装requirements.txt中的所有安装包,命令窗口执行:pip install -r requirements.txt 使用清华源安装更快 3、打开GUI推理测试 当以上步骤顺利完成后,环境已经搭建完毕,下面我们尝试打开GUI界面进行测试 pycharm中打开整个项目,导入配置anaconda安装的YOLOv8-GUI虚拟环境(参考博客) 运行main_jiemian.py即可成功打开界面模型文件放在main_gui_code/models/文件夹,后缀为.pt。可以存放多个模型,可通过界面来选择要使用的模型 点击选择模型按钮选择pt模型,然后点击选择路径按钮,选择待测图片或者视频,最后点击开始检测按钮,开始推理测试并显示画框及得分值 4、训练模型过程 进入到\ultralytics\ultralytics\yolo\v8\detect\文件夹下,datasets即为我们准备好的数据集,训练其他模型同理。 data文件夹下的cross_line.yaml文件为数据集配置文件,博文有介绍https://blog.csdn.net/DeepLearning_?spm=1011.2415.3001.5343 train.py中208行,修改为的data = cfg.data or './cross_line.yaml' # or yolo.ClassificationDataset("mnist") 207行修改自己使用的预训练模型 若自己有显卡,修改211行,如我有四张显卡,即改成args = dict(model=model, data=data, device=”0,1,2,3“) 以上配置完成后运行train.py开始训练模型,训练完毕后会在runs/detect/文件夹下生成train*文件夹,里面包模型和评估指标等 5、无GUI推理测试 训练好模型,打开predict.py,修改87行,model = cfg.model or 'yolov8n.pt',把yolov8n.pt换成我们刚才训练完生成的模型路径,待测试的图片或者视频存放于ultralytics\ultralytics\assets文件夹, 运行predict.py即可,检测结果会在runs/detect/train文件夹下生成。 【资源说明】 1、该资源内项目代码都是经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能。
BoT-SORT是发表于2022年的先进的多目标跟踪算法,它结合了运动和外观信息、相机运动补偿和更准确的卡尔曼滤波状态向量,并把这些改进集成到ByteTrack,从而在MOTA、IDF1和HOTA性能指标上超过了ByteTrack,增强了目标跟踪的鲁棒性,比较适用于存在相机运动的场景。YOLOv8代码中已集成了BoT-SORT。本课程使用YOLOv8和BoT-SORT对视频中的行人、车辆做多目标跟踪计数与越界识别,开展YOLOv8目标检测和BoT-SORT多目标跟踪强强联手的应用。课程分别在Windows和Ubuntu系统上做项目演示,并对BoT-SORT原理和代码做详细解读(使用PyCharm单步调试讲解)。课程包括:基础篇、实践篇、原理篇和代码解析篇。Ÿ  基础篇包括多目标跟踪任务介绍、常用数据集和评估指标;Ÿ  实践篇包括Win10和Ubuntu系统上的YOLOv8+BoT-SORT的多目标跟踪计数与越界识别具体的实践操作步骤演示;Ÿ  原理篇中讲解了马氏距离、匈牙利算法、卡尔曼滤波器、SORT、DeepSORT和BoT-SORT多目标跟踪算法的原理,并解读了BoT-SORT论文;Ÿ  代码解析篇中使用PyCharm单步调试对BoT-SORT的代码逐个文件进行讲解。课程提供代码解析文档。相关课程:《YOLOv8+ByteTrack多目标跟踪(行人车辆计数与越界识别)》https://edu.csdn.net/course/detail/38901《YOLOv8+DeepSORT多目标跟踪(行人车辆计数与越界识别)》 https://edu.csdn.net/course/detail/38870《YOLOv5+DeepSORT多目标跟踪与计数精讲》https://edu.csdn.net/course/detail/32669 
要将YOLOv5和YOLOv8模型集成到一个PyQt5中可以按照以下步骤进行: 1. 安装PyQt5:首先,确保已经在系统中安装了PyQt5库。可以使用pip命令进行安装:`pip install pyqt5` 2. 导入YOLOv5和YOLOv8模型:将已经训练好的YOLOv5和YOLOv8模型导入到项目中。这些模型可以是预训练的权重文件(如.pt文件)或任何模型文件夹。 3. 创建PyQt5界面:使用PyQt5创建一个用户界面来显示检测结果。可以使用QWidget或QMainWindow等组件来构建界面。 4. 添加图像显示区域:在PyQt5界面中添加一个图像显示区域,用于展示待检测的图像以及检测结果。可以使用QLabel或QGraphicsView等组件来显示图像。 5. 添加文件选择功能:添加一个文件选择按钮或文件选择对话框,用于选择待检测的图像文件。可以使用QPushButton或QFileDialog等组件来实现文件选择功能。 6. 运行YOLO检测:在选择图像文件后,调用YOLOv5和YOLOv8模型对图像进行检测,并获取检测结果。 7. 显示检测结果:将检测结果在图像显示区域中展示出来。可以使用画图工具或OpenCV库来绘制边界框和标签等信息。 8. 优化界面和功能:根据需要,可以进一步优化界面和功能,如添加多图像批处理、实时视频检测等功能。 9. 打包和部署:完成模型集成界面优化后,对应用程序进行打包和部署,以便在其他系统上运行。 总之,将YOLOv5和YOLOv8模型集成PyQt5中需要导入模型、创建界面、添加图像显示区域和文件选择功能,实现检测和展示结果等步骤。根据具体需求,可以进一步完善界面和功能,最后进行打包和部署。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值