KNN近邻算法
k-近邻算法(kNN),它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类
import numpy as np
import operator
"""
Parameters:
无
Returns:
group - 数据集
labels - 分类标签
"""
# 函数说明:创建数据集
def createDataSet():
#六组二维特征
group = np.array([[3,104],[2,100],[1,81],[101,10],[99,5],[98,2]])
#六组特征的标签
labels = ['爱情片',