yolov3 train.py解读

本文详细解读YOLOv3的训练脚本train.py,涉及dataset.py中图像预处理,darknet53.py的残差结构,yolo body.py的特征提取与融合,以及yolo loss.py中的目标分配和损失计算。通过13x13网格预测三个边框,利用IOU确定锚点框匹配,并介绍训练流程及参考资源。
摘要由CSDN通过智能技术生成

train.py

#-------------------------------------#
#       对数据集进行训练
#-------------------------------------#
import datetime
import os
from functools import partial

import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from torch import nn
from torch.utils.data import DataLoader

from nets.yolo import YoloBody
from nets.yolo_training import (YOLOLoss, get_lr_scheduler, set_optimizer_lr,
                                weights_init)
from utils.callbacks import EvalCallback, LossHistory
from utils.dataloader import YoloDataset, yolo_dataset_collate
from utils.utils import (get_anchors, get_classes, seed_everything,
                         show_config, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值